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Cystitis glandularis (CG), a common glandular lesion of the 
urinary bladder, is a cystic structure with a glandular lumen sur-
rounded by outer urothelial cells that usually evolve from von 
Brunn’s nests after long-standing inflammation or irritation [1]. 
CG with intestinal metaplasia (IM) or the presence of mucin-
containing goblet cells can produce abundant extracellular mucin 
that requires differentiation from primary adenocarcinoma, urachal 
adenocarcinoma, or metastatic adenocarcinoma from other organs 
[1,2]. CG can also develop a mass-like florid lesion that mimics 
bladder cancer on radiologic and cystoscopic examinations [3].

In addition to the clinical and histopathological disguise char-
acteristics of CG, its relationship with malignancy has been dis-
cussed in studies with contrasting results [2]. For example, the 

co-occurrence of CG and adenocarcinoma has been frequently 
reported in the urinary bladder, which may indicate a connection 
between these two entities [1]. Furthermore, prior studies, using 
single gene or chromosome assays, underlaid the molecular basis 
supporting the premalignant nature of CG with or without IM 
by elucidating telomere shortening and chromosomal instability 
[4], p53 loss of heterozygosity and overexpression [5], and nu-
clear β-catenin expression [6]. In contrast, other studies failed 
to find a clear indication that CG, with or without IM, increased 
the future risk of developing bladder cancer during years of ret-
rospective observation [7,8]. Comprehensive characterization 
would greatly help identify the pathobiology and clinical impli-
cations of CG.
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tional elements related to ROS metabolism, development, and transport using network analysis. The abundance of these four mole-
cules in UC/CG than in NU was consistent with the oncologic functions in CG. Conclusions: Using a proteomic approach, we identified 
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DEPs in UC and CG, suggesting that altered ROS metabolism might imply potential cancerous risks in CG.
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In this study, we compared the proteomic landscape of CG 
with that of urothelial carcinoma (UC) and normal urothelium 
(NU). Differentially expressed proteins (DEPs) with functional 
enrichment were analyzed in CG, UC, and NU to identify the 
oncologic significance of CG at the molecular level.

MATERIALS AND METHODS

Patient selection

From the Seoul National University Hospital, 10 CG, 12 UC, 
and 9 NU specimens were collected after excluding patients 
who previously had any bladder tumor or intravesical treatment. 
Experienced pathologists (M.J. and H.S.R.) reviewed the diag-
noses using hematoxylin-eosin slides based on the 2022 World 
Health Organization (WHO) classification [9]. All samples 
were obtained by transurethral resection of the urinary bladder, 
except for one NU, which was obtained from the ureter. 

Liquid chromatography-tandem mass spectrometry 

Formalin-fixed paraffin-embedded slides were scrapped and 
lysed in a sodium dodecyl sulfate-extraction buffer. After protein 
isolation, samples were sonicated and precipitated using acetone. 
Proteins were digested according to the filter-aided sample prep-
aration procedure [10]. Tandem mass tag 6-plex labeling was 
employed for the peptide samples according to the manufacturer’s 
instructions, with modifications. After pooling the labeled pep-
tides, the sample was separated into 12 fractions using Agilent 
1290 bioinert high-pH reverse-phase liquid chromatography 
(Agilent, Santa Clara, CA, USA). For each peptide fraction, liquid 
chromatography-tandem mass spectrometry (LC-MS/MS) analysis 
was conducted using a Q-ExactivePlus mass spectrometer (Thermo 
Fisher, Waltham, MA) with an Ultimate 3000 RSLC system 
(Dionex, Sunnyvale, CA, USA), as previously described, with 
modifications [11]. Peptides were identified using a false discovery 
rate (FDR) of 1% as cutoff. Raw data are available in the Proteo-
meXchange Consortium (PXD027602) [12,13].

Proteomic data analysis

The MS raw data were processed using MaxQuant ver. 1.5.3.1 
(Max Planck Institute of Biochemistry, Munich, Germany) [14] 
with the Andromeda engine [15]. For label-free quantification, the 
iBAQ algorithm was used on MaxQuant platform [16]. Using 
normalized abundance, we identified DEPs among CG, UC, 
and NU based on an analysis of variance (ANOVA) [14] test as 
a cutoff for permutation-based FDR < 0.05. Subsequently, the 
DEPs were hierarchically clustered based on Euclidean distance. 

Following a review of their abundance, we enlisted “UC-like” DEP 
clusters as “UC-like signature”, for which CG and UC overlapped 
but NU did not. All analyses were conducted using Perseus ver. 
1.6.14.0 (Max Planck Institute of Biochemistry).

Functional enrichment analysis

To determine the biological processes represented by the lists 
of DEPs, we investigated protein-protein interactions (PPIs) using 
String database [17], Gene Ontology-biologic process (GOBP) 
annotation using Toppgene Suite [18], and the Molecular Signa-
tures Database (MSigDB) Hallmark gene sets using pre-ranked 
Gene Set Enrichment Analysis (GSEA) [19]. To examine the as-
sociations among GOBPs, we reconstructed a network model 
using REVIGO [20]. Network models of PPI and GOBP were 
visualized using Cytoscape ver. 3.7.2 [21]. The z-scores of the se-
lected proteins were compared between the group with and with-
out IM using a two-tailed t-test.

RESULTS

We investigated 31 urothelial specimens, including 10 CGs, 
12 UCs, and nine NUs, using a proteomic approach. A schematic 
outline of this study is shown in Fig. 1. The median ages were 
40, 70, and 63.5 years, respectively, and the male-to-female ratios 
were 1.0, 0.4, and 0.9, respectively. Half of the specimens that con-
tained CG were accompanied by IM. All UCs were confined to the 
mucosa (stage Ta), and eight (67%) were of WHO high grade.

From LC-MS/MS analysis, we identified 9,890 proteins across 
all samples and 1,139 DEPs among the three entities (ANOVA 
FDR < 0.05). With unsupervised hierarchical clustering, a sub-
stantial number of DEPs were discovered to overlap with CG/NU 
in a way distinct from UC (Fig. 2). CG was not differentiated by 
the presence of IM (Fig. 2, asterisks). Interestingly, we found a 
subset of DEP clusters (n = 53, 5%) that were differentially ex-
pressed in NU but similarly expressed between CG and UC (Fig. 
2, arrows); thus, these proteins were named as “UC-like signature” 
(Fig. 3A). Since the signature were similar within each group, the 
patterns of these signatures were thought to represent the general 
profile of CG.

We hypothesized that this signature might represent the UC-
like characteristics of the CG. Using PPI analysis, we explored 
cellular processes represented by the “UC-like signature”. This 
resulted in sets of DEP networks within the “UC-like signature”, 
which were enriched for reactive oxygen species (ROS) and energy 
metabolism [22-24], growth and DNA repair [25,26], transport 
[27,28], motility and epithelial-mesenchymal transition (EMT) 
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[29,30], and cell survival [31,32] (Fig. 3B). The unit associated 
with ROS and energy metabolism, which was connected to the 
one with growth and DNA repair functions, included the top-
ranked DEPs (e.g., SOD2, PRKCD, CYCS, and MRPL23) (Fig. 
3B). Using the official pre-ranked GSEA of the “UC-like signa-
ture”, we also identified significant enrichment of ultraviolet 
(UV) response (normalized enrichment score = 1.772, FDR = 

0.03) for SOD2, PRKCD, and MRPL23 (Fig. 3C). UV radiation 
stimulates carcinogenic sequences by promoting ROS generation 
and DNA damage [33]. These data suggest that CG is predomi-
nantly a benign lesion, but oxidative stress might be a gateway 
theme representing oncogenic potential in CG.

To further characterize the ”UC-like signature”, we shortlisted 
the top 10 most significant DEPs (Fig. 3A, asterisk), followed 
by GOBP analysis (Fig. 4A). Subsequently, we constructed a 
network of connections between the GOBP terms. Consistent 
with the aforementioned single-protein networks, functional el-
ements related to ROS metabolism, development, and transport 
were highlighted by GOBPs (Fig. 4B), which suggests that these 
functions could collectively substantiate the cancerous risks in CG.

Of note, GOBPs were represented almost exclusively by four 
molecules, i.e., SOD2, PRKCD, CYCS, and HCLS1 (Fig. 4A), 
and their abundance in UC/CG compared to NU accordantly 
pointed toward oncologic functions. For example, previous studies 
have shown an association of decreased level of SOD2 and increased 
level of PRKCD, as observed in CG/UC versus NU, with ROS 
production [22,24]. Overt oxidative stress by activating oncogenic 
signaling pathways, DNA mutations, EMT, and stromal re-
modeling promotes bladder cancer development and progression 
[22]. In line with this, altered expression of CYCS and HCLS1 
might deregulate oxidative respiration and the RAS signaling 
pathway, thereby enhancing the malignant behavior of blad-
der cancer [23,34]. We further examined whether these four sta-
tistically and functionally significant molecules were differentially 
expressed with IM and found no significant differences related 
to IM (Fig. 4C).

DISCUSSION

The malignant risk of CG and its association with bladder can-

Fig. 1. Schematic outline of the study. (Top) Liquid chromatography-tandem mass spectrometry (LC-MS/MS)–based proteomic analysis of 
12 urothelial carcinoma (UC),10 cystitis glandularis (CGs), and nine normal urothelial (NU) specimens identified 9,890 proteins. Formalin-fixed 
paraffin-embedded (FFPE) slides were scrapped and proteins were isolated. After sonication and precipitation of samples, proteins were di-
gested according to the filter-aided sample preparation (FASP) procedure. (Bottom) Differentially expressed proteins (DEPs) were discovered 
based on analysis of variance (false discovery rate < 0.05), and DEPs with UC-like signatures were revealed in CG. Functional enrichment 
analysis was performed for the DEPs and top 10 DEPs, respectively. 
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cer have been disputed [1,2]. Considering the high prevalence of 
CG, there is a dire need to clarify its oncologic implications. Using 
LC-MS/MS, we revealed the proteomic landscape of CG in rela-
tion to malignant (UC) and normal (NU) urothelial tissues. CG 
generally presented an NU-like profile, in contrast to UC, indicat-
ing the overall benign nature of CG. By retrospectively observing 
a handful of patients with CG, consistent with this result, previ-
ous studies failed to confirm clear association between UC and CG 
[7,8]. Conversely, we confirmed that some of the clustered DEPs 
showed an opposite pattern across the diagnosis; these proteins 

were shared by CG and UC but not by NU. Using functional and 
network analyses, we found that these DEPs coded for ROS and 
energy metabolism, growth and DNA repair, transport, motility 
and EMT, and cell survival, further supporting the relation of this 
“UC-like signature” with the malignant risk in CG. To our knowl-
edge, this is the first study to determine the oncogenic characteris-
tics of CG using a comprehensive proteomic analysis. Further 
large-scale studies are required to determine the risks of UC devel-
opment in patients with CG.

Using an interconnected functional network analysis of the 

Fig. 2. Unsupervised hierarchical clustering of 1,139 differentially expressed proteins identified by an analysis of variance test of urothelial 
carcinoma (UC), cystitis glandularis (CG), and normal urothelium (NU). Arrows indicate a “UC-like signature” that showed disparity between 
UC/CG and NU. Asterisks indicate CG samples showing intestinal metaplasia.
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shortlisted proteins, including SOD2, PRKCD, CYCS, and 
HCLS1, ROS metabolism, structural development, and trans-
port functions were concordantly found to be significantly en-
riched in the “UC-like signature.” ROS are tightly regulated in 
normal cellular environments, and increased ROS act as versatile 
transducers for the generation and progression of bladder cancer 
[22]. For example, both UC and CG showed downregulation of 
SOD2, a scavenging molecule, and upregulation of PRKCD, an 
oxidative enzyme associated with ROS accumulation. ROS im-

balance induces oxidative DNA damage, mutations, propagation 
of oncogenic signals including RAS, mitogen-activated protein 
kinases, phosphoinositide 3-kinase, and nuclear factor κB path-
ways, EMT, and stromal modification in bladder cancer [22,24]. 
Consistent with this, a previous study suggested that alterations 
in ROS metabolism participate in inflammation-associated can-
cer sequences [35,36]. In addition, upregulation of PRKCD can 
further support a malignant phenotype in bladder cancer by 
promoting migration and invasion [37]. CYCS is instrumental 

Fig. 3. Pathobiologic characteristics of the “urothelial carcinoma (UC)-like signature”. (A) The UC-like signature proteins. Asterisks denote the 
10 top-listed proteins by false discovery rate (FDR). (B) Protein-protein interaction networks of the “UC-like signature” proteins with their 
common functions. (C) Gene Set Enrichment Analysis of the “UC-like signature” shows enrichment of response to ultraviolet in molecular 
hallmark function. CG, cystitis glandularis; EMT, epithelial-mesenchymal transition; FWER, family wise error rate; NES, normalized enrichment 
score; NU, normal urothelium; ROS, reactive oxygen species.
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in regulating oxidative phosphorylation and energy metabo-
lism, and high maintenance of CYCS, as identified in UC/CG, 
could induce metabolic modification in bladder cancer, or War-

burg effect [23]. In addition, UC and CG showed lower HCLS1 
levels than NU. HCLS1, an actin-binding molecule supporting 
cellular transport and trafficking, has been shown to result in 

Fig. 4. Imperative functions enriched in the “urothelial carcinoma-like signature”. (A) Gene Ontology-biologic processes (GOBPs) represented 
by the top 10 shortlisted proteins of “urothelial carcinoma-like signature”. (B) Network analysis of the GOBPs identifies reactive oxygen spe-
cies (ROS) metabolism, structure development, and transport as common functional themes. (C) SOD2, PRKCD, CYCS, and HCLS1 were 
comparable between cystitis glandularis with and without intestinal metaplasia (IM). The value is expressed with z-scores of the proteome 
abundance. FDR, false discovery rate.
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adverse outcomes in bladder cancer [34,38]. We believe that the 
“UC-like signature” might reflect the oncogenic pathway related 
to altered ROS and energy metabolism and structural modifica-
tion in CG, and the expression of these signature proteins deserves 
further study to determine the risk of aggression in CG.

This study lacked specimens with adenocarcinoma in the anal-
ysis. The malignant association of CG with IM has been conjec-
tured, typically in terms of bladder adenocarcinoma, but definite 
evidence has not been confirmed [1]. Instead, altered ROS and 
energy metabolism have been implicated in the transformation 
of dysplasia to adenocarcinoma in the esophagus, consistent 
with the functions enriched in the “UC-like signature” [35]. In 
addition, the overall proteomic profile and biomarkers relevant 
to such functions showed no difference regardless of the presence 
of IM in CG. However, previous studies have suggested that CG 
with IM may be more advanced than CG without IM regarding 
tumorigenic potential, as exemplified by more robust telomere 
shortening or β-catenin activation [4,6]. Therefore, we reasonably 
speculate that the “UC-like signature” might reflect the malig-
nancy risk encoded in CG irrespective of IM at a global level.

In conclusion, using comprehensive proteomic profiling, we 
identified a predominantly non-neoplastic landscape of CG that 
is closer to NU than to UC. Furthermore, we confirmed a small 
subset of common DEPs in UC and CG, suggesting altered func-
tions of ROS metabolism that might imply potential cancerous 
risks in CG.
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