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Because tissue cells represent the fundamental unit of biology, 
deciphering the phenotypic heterogeneity between cells, the in-
tercellular interactions, and the spatial organization of cells in 
tissues are crucial for understanding the pathophysiology of dis-
ease [1]. Recently developed high-throughput technologies, such 
as single-cell RNA sequencing (scRNA-seq) and spatial tran-
scriptomics (ST), have brought revolutionary insights into diverse 
research areas, including developmental biology, cancer, immu-
nology, and neuroscience [2,3]. However, the necessary tissue 
dissociation step of scRNA-seq destroys information on their 
spatial context, which is crucial to understand the intercellular 
interactions underlying normal and disease tissues [4]. Moreover, 
integrating scRNA-seq and ST data can address this limitation 
and thus provide novel insights for homeostasis, development, 
and disease microenvironment, which cannot be informed by 
scRNA-seq alone [4]. In this review, from a pathologist’s view, we 
aim to suggest the overview of the integrative analysis of scRNA-
seq and ST and describe representative research studies. 

THE INTRODUCTION OF SINGLE-CELL 
RNA SEQUENCING

Conventional transcriptome technologies, including microar-
rays and bulk RNA sequencing (RNA-seq), have shown a way 
to assay only the average expression RNA expression signal of 
all cell types within the tissue. However, gene expression is het-
erogeneous between many tissue cells and even between the same 
cell types, and thus these technologies are likely to miss impor-
tant cell-to-cell variability [2]. After the introduction in 2009 [5], 
the droplet-based scRNA-seq has been the most popular scRNA-
seq technology that can capture the transcriptomes in tens of 
thousands of single cells per sample to dissect transcriptomic het-
erogeneity masked in bulk RNA-seq [6]. Since there have been 
numerous reviews that comprehensively introduce the techno-
logical aspects and various analysis methodologies of scRNA-seq 
[2,7-12] and ST [3,13-16], we briefly introduce the overview of 
principles and analytical methods of scRNA-seq and ST in this 
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review. We summarize the strengths and limitations of clinical 
and experimental gene expression methods: recent scRNA-seq 
and ST, compared to conventional histopathology and bulk 
RNA-seq (Fig. 1).

The ordinary procedures for the generating scRNA-seq data 
include single-cell isolation and capture, cell lysis, reverse tran-
scription, cDNA amplification, and library preparation [17]. 
Single-cell isolation and capture is the first process of acquiring 

high-quality single cells from a tissue in which all transcripts from 
single-cell will be uniquely barcoded. Polyadenylated mRNA 
molecules are captured by poly[T]-primers, reverse transcribed, 
polymerase chain reaction amplified, and resulting cDNA from 
every cell is pooled and sequenced by next-generation sequenc-
ing (NGS) [18]. Many methodologies are different in terms of 
the number of cell per sample (the breadth of cellular profiling) 
and the number of genes per cell (the depth of cellular profil-
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Fig. 1. Overview of strengths and limitations of clinical and experimental methods for gene expression. Conventional methods of histopathol-
ogy (A) and bulk RNA sequencing (RNA-seq) (B). FISH, fluorescence in situ hybridization. Recent methods of single-cell RNA sequencing 
(scRNA-seq) (C) and next-generation sequencing (NGS)-based spatial transcriptomics (ST) (D). 
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ing) [11]. Some provide full-length transcript coverage, while 
others only partial sequences from either 3' or 5' end of the 
transcript [7]. The preparation of high-quality single-cell sus-
pension is key to successful scRNA-seq studies, and researchers 
should acknowledge the possible protocol-specific biases that 
can be developed during single-cell isolation [19,20]. While 
scRNA-seq needs prior tissue dissociation of fresh tissue for the 
preparation of single-cell suspension, single-nucleus RNA-seq 
capturing only transcripts present in the nucleus can be prepared 
from frozen or fresh tissue without the need for tissue dissocia-
tion [1,21].

Workflows for scRNA-seq analysis include pre-processing 
(quality control, normalization, data correction, feature selection, 
and dimensionality reduction) and cell/gene-level downstream 
analysis (clustering, cluster annotation, trajectory inference, and 
differential expression analysis). The best-practice recommenda-
tions and details for each step of the analysis pipeline are com-
prehensively described elsewhere [8]. There have been various 
tools for analyzing scRNA-seq data, among which R-package 
Seurat is the most commonly used tool for analysis and visualiza-
tion of scRNA-seq data [22]. Researchers easily find the sample 
analysis pipeline using Seurat R-package with the representa-
tive dataset at https://satijalab.org/seurat/articles/pbmc3k_tuto-
rial.html. Major applications of scRNA-seq include the clustering 
and identification of known or novel cell types, inferring cellular 
trajectory, and inferring gene regulatory networks [2]. Unsu-
pervised clustering is preferred in most cases for clustering and 
identification of cell types, although supervised clustering using 
prior assumptions and canonical marker genes is also available [18]. 
Dimensional reduction and visualization are performed using 
algorithms such as principal component analysis, t-distributed 
stochastic neighbor embedding, and uniform manifold approxi-
mation and projection, followed by cell clustering into subpopu-
lations with biological significance using algorithms such as a 
graph-based clustering [18,20]. In addition to the unsupervised 
clustering, cell types can be determined by reference-based anno-
tation using reference expression profiles from bulk RNA-seq 
[23]. Trajectory inference reconstructs dynamic cellular trajec-
tories during the cellular transition between cell identities under-
lying biological process of interest [2]. Tools for trajectory infer-
ence have been developed for ordering single cells in pseudotime, 
an abstract unit of progress through the single-cell trajectory, by 
taking advantage of individual cells’ asynchronous progression 
of transcriptional dynamics along the biological process [24]. For 
trajectory inference, RNA velocity that is the time derivative of 
the gene expression state, can be analyzed to predict the future 

state of individual cells by distinguishing between unspliced 
and spliced mRNAs [25]. From scRNA-seq data, gene regulato-
ry networks underlying gene expression by transcription factors, 
co-factors, and signaling molecules can be inferred, which may 
help to pinpoint key factors that determine phenotype in healthy 
systems as well as in diseases [26,27]. 

THE INTRODUCTION OF SPATIAL 
TRANSCRIPTOMICS

Overview of ST was summarized in Fig. 2. One of the major 
limitations of scRNA-seq is the loss of spatial context since cells 
should be liberated from whole tissue before scRNA-seq. The 
spatial location of a cell can reveal helpful information for defin-
ing cellular phenotypes, cell states, intercellular interactions, and 
cell functions [15]. Although histopathology is the gold standard 
for diagnosis in most cases, it is limited by the type and number 
of cellular features delineated by stained agents [3]. Traditional 
methodologies for applying technologies for analyzing expres-
sion within tissues (in situ) include in situ hybridization (ISH) 
and immunohistochemistry; however, these methods limit anal-
ysis to, at most, a handful of genes or proteins at a time [13]. 
The recent development of ST technologies enables profile the 
whole transcriptome in spatially resolved way [13]. ST technolo-
gies can describe an unbiased picture of spatial composition that 
may provide valuable biological insights into development, physi-
ology, and diseases microenvironment.

As technologies and computational approaches for generating 
and analyzing ST data are rapidly evolving, there are various op-
tions for ST technologies that differ in terms of the number of 
genes and the size of tissues that can be assayed [13]. ST tech-
nologies are primarily categorized as (1) NGS-based, encoding 
positional information onto transcripts; and (2) imaging-based 
approaches, comprising in situ sequencing-based or ISH-based 
methods [28,29]. Recently introduced and widely used NGS-
based ST have shown increased resolution (55 μm spot diameter 
with 100 μm center-to-center distance) and sensitivity (more than 
10,000 transcripts per spot) compared to the previous ones [13]. 
Currently, commercial kits utilize fresh-frozen tissues for ST; 
however cutting-edge technologies have shown successful ST ap-
plication to formalin-fixed, paraffin-embedded (FFPE) tissues 
that will expand the usages of ST for numerous FFPE samples 
in biobanks [30]. ISH-based high-plex RNA imaging (HPRI) 
is a targeted ST method that localizes and quantifies RNA tran-
scripts of hundreds of genes in an intact tissue through multi-
plexed fluorescent microscopy [4]. Depth is a limiting factor for 
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NGS-based techniques, while lack of transcriptome-wide cover-
age is for HPRI. Therefore, current ST technologies themselves 
still cannot reveal the deep transcriptomic information in tissue 
at single-cell level with accuracy, although they can shed light on 
the architecture of the cell-type distribution or the niches en-
riched for a specific gene set [4]. Until HPRI improves the tran-
scriptome coverage and applicability of untargeted methods, the 
ST may stay advantageous, especially for obtaining an unbiased 
characterization of the spatial transcriptomics [4]. 

Compared to scRNA-seq, the workflows for ST analysis and its 
integration with scRNA-seq have emerged recently and rapidly 
evolved. As previously described, the workflows for ST analysis 
are akin to those in scRNA-seq. Several additional points are 
needed for analyzing ST: (1) to identify genes with coherent spa-
tial patterns, (2) spot deconvolution or mapping single cells, and 
(3) analysis and visualization in the intercellular interactions 
[3,15]. Researchers can utilize various ST methodologies for 
clustering analysis of spatially coherent domains and identifica-
tion of spatially domain-enriched genes [3]. Unsupervised clus-
tering and subsequent characterization aim to identify clusters 
of spots and sets of genes with biological significances [13]. A 
cluster of spots may be characterized by pathological findings or 
by molecular marker genes [13], indicating pathologists’ roles 
in the biological interpretation of ST data. Alternative to the un-

supervised clustering, researchers may focus on a specific region 
of interest, for example a specific layer in the brain or the interface 
between cancer and microenvironment, or on context-specific 
genes, for example known gene sets or highly variable genes [13]. 
Widely used techniques for ST utilize 50–100-μm spot diameters 
with mixture of 10–20 cells, indicating that the spatial spots in 
the ST dataset may correspond to mixture expressions of several 
cells [31]. The proportion of cell type (deconvolution) or the desig-
nation of cell type (mapping) can be analyzed using both scRNA-
seq and ST data, which will be explained in detail in the later 
chapter of the manuscript [4]. Surely, while scRNA-seq analysis 
cannot distinguish short-distance (juxtacrine and paracrine) and 
long-distance (endocrine) intercellular signaling due to lack of 
spatial information, ST dataset can seek the spatial coordinate of 
cell signaling [3].

While currently often underused, the tissue image from ST anal-
ysis can be improved to show high-resolution information when 
combined with the knowledges in the field of histopathology 
[13]. For example, a previous study revealed that integrating ST 
data with high-resolution histology image data could improve 
the resolution of ST data [32]. Pathologists may play the main 
role in the integrative analysis and biological interpretation of ST 
for histopathology.

Unsupervised clustering of spatial spots
1. By expression profiles of spatial spots
2. By spatial transcriptomics and histology

Alternative approach for clustering
1. ‌�Specific region of pathological interest 

(e.g., specific layer of brain or tumor margin)
2. ‌�Region with up-regulated gene sets 

(e.g., spatial spots with immune activation) 

Additional analysis for ST
1. Genes with coherent spatial patterns 
2. Spot deconvolution or mapping single cells
3. Intercellular interactions 
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Fig. 2. Overview of spatial transcriptomics (ST) analysis. (A) Example of tissue slide (Visium technology) for ST. Original tissue image, detect-
ed area, spot clustering of ST data by unsupervised clustering (spatial spots colored by spot clusters), and magnified view of spatial spots 
are shown. Distance between spatial spots were 100-μm, and each spot has a diameter of 55-μm. (B) ST can measure genome-wide ex-
pression profiles in each 55-μm spatial spots. (C) Analysis strategies for ST data.
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INTEGRATIVE ANALYSIS OF SINGLE-CELL AND 
SPATIAL RNA SEQUENCING

Integrated analysis of scRNA-seq and ST is summarized in 
Fig. 3. The major limitations for scRNA-seq and ST are loss of 
spatial information and low resolution, respectively. Furthermore, 
the lack of reliable ST methods to implement deep sequencing 
necessitates the need to integrate scRNA-seq and ST data. Thus, 
simultaneous measurements followed by the integrated analysis 
of scRNA-seq and ST from the same tissue may improve the data 
quality. Herein, we summarize strategies for integrating scRNA-
seq and ST data: deconvolution, mapping, and spatially informed 
ligand-receptor analysis.

Because of the high read-depth and single-cell resolution of 
scRNA-seq compared with ST, cell subpopulations need to be 
defined firstly by scRNA-seq in a given tissue. There are two pri-
mary approaches for integration of scRNA-seq and ST data: first, 
deconvolution for ST without single-cell resolution such as spa-
tial barcoding and second, mapping for ST with single-cell reso-
lution such as HPRI [4]. Deconvolution refers to the process of 
quantifying the relative proportion of each cell type in spatial spots 

[15]. There are two main ways of the deconvolution: (1) infer-
ring the proportion of cellular subtypes for a given spot, and 
(2) scoring a given spatial transcriptomic spot for how strongly 
it corresponds to a single cellular subtype. SPOTlight tool is 
good at validating the deconvolution analysis in terms of the 
accuracy, sensitivity, and specificity of cell-type detection [31]. 
The mapping has two facets: mapping assigned scRNA-seq–
based cell subtypes to each cell and mapping each scRNA-seq 
cell to a specific niche or region of a tissue [13]. For mapping, 
pciSeq is one of the popular tools that have shown effectiveness 
in classifying cell type [33]. Researchers can adopt following 
statistical models for deconvolution and mapping: regression-
based deconvolution and probabilistic modeling for deconvolu-
tion, and cell-type scoring and cluster-based mapping for map-
ping [4]. The possible mismatch between cell subtypes present 
in scRNA-seq data and those in spatial sequencing data that 
may complicate deconvolution and mapping should be acknowl-
edged [4].

Spatial data from ST, for example, the spot clusters from un-
supervised clustering and the areas of pathological interests, can 
be analyzed for deconvolution or mapping of cell types identi-

Strengths
Complementary aspects 
(higher resolution from scRNA-seq)
(spatial context from ST)

Limitations
High cost and analytic complexity

Integrated analysis 

scRNA-seq ST

Deconvolution:
infer cell type composition

(for ST without single-cell level)

Mapping:
designate cell type 

(for ST with single-cell level)

Spatially informed ligand-receptor analysis:
ligand-receptor interactions from scRNA-seq

+ spatial information (ligand-receptor proximity)

Which cell type?

or

A B

Fig. 3. Schematic view of integrated analysis of single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST). (A) Strengths and 
limitations of integrated analysis of scRNA-seq and ST. (B) Analysis strategies for integrated scRNA-seq and ST data.
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fied by scRNA-seq. Unsupervised clustering of ST data can be 
performed using either gene expression of spatial spots alone or 
in combination with gene expression and histopathology [15], 
where pathologists may play an important role in the interpreta-
tion of pathological findings between identified cell subpopula-
tions. Instead, the areas of pathological interests can be deter-
mined from the matched histological images by the pathologists, 
which are further investigated for distinct molecules of the ar-
eas: proportion of cell subtype, distinct expression, and intercel-
lular interactions. For example, in cancer tissues, interesting areas 
of the tumor core and leading edges can be annotated by the pa-
thologists for further investigations [34]. 

Since intercellular interactions, especially juxtracrine and 
paracrine communications, are spatially restricted, ST data is well 
suited to validate the ligand-receptor interactions computed from 
scRNA-seq [4,35]. Standard algorithms for predicting ligand-
receptor interaction pairs adopt both scRNA-seq data and a 
known database for ligand-receptor interactions, such as Cell-

Fig. 4. Example study of integrated analysis [38]. Findings from single-cell RNA sequencing (scRNA-seq) (A), spatial transcriptomics (ST) (B), 
and integrated analysis of scRNA-seq and ST (C) are summarized. FBR, foreign body reaction.

phoneDB [36]. In this, researchers can use ligand-receptor and 
ligand-receptor-target co-expression restriction to establish in-
tercellular communications from scRNA-seq data. From ST data, 
a further restriction can be applied by ligand-receptor proximity 
where the spatial context can enhance the intercellular interaction 
analysis. Integrated analysis of scRNA-seq and ST can be used to 
nominate the receptors and ligands that mediate communica-
tion between the proximal cell subpopulations. The Giotto work-
flow is one of widely used tools for anticipating the likelihood 
that a given ligand-receptor interaction is used more or less based 
on the proximity of all of the co-expressing cells [37].

EXAMPLES FOR THE INTEGRATION OF 
SINGLE-CELL RNA SEQUENCING AND SPATIAL 

TRANSCRIPTOMICS TECHNOLOGIES

Our group previously published the integrative analysis of 
scRNA-seq and ST of a foreign body reaction, which character-
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However, cluster of giant cells cannot be determined without 
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Unsupervised clustering found a cluster with higher proportion 
of giant cells from histology (purple colored, “V5” cluster).

High expression of gene markers of giant cells from scRNA-seq 
(C7) in V5 cluster

High proportion of giant and epithelioid cells in V5 by 
deconvolution analysis

scRNA-seq

ST

Integrated analysis
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ized the molecular signatures and cellular interactions of epithe-
lioid cells and multinucleated giant cells in the foreign body re-
action (Fig. 4) [38]. From the scRNA-seq data, we designated 
three putative clusters of macrophages, such as M2-like macro-
phage, epithelioid cells, and giant cells; however the designation 
of cell types cannot be completely from scRNA-seq data alone 
[38]. Unsupervised clustering of the ST data using the same for-
eign body reaction tissue found a cluster with the smallest num-
ber of spatial spots with scattered distribution, in which patho-
logical examination found a relatively higher proportion of giant 
cells compared with other spot clusters [38]. Consistently, de-
convolution analysis also supported a relatively high proportion 
of giant and epithelioid cells in this cluster [38]. scRNA-seq dis-
covered the marker genes for giant cells, which were further vali-
dated by both ST and immunohistochemistry [38].

We also present another two integration studies for human 
cancer transcriptomics. Profiling of human cutaneous squamous 
cell carcinoma (cSCCs) and matched normal tissues was performed 
via scRNA-seq, ST, and multiplexed ion beam imaging in ten 
cSCC patients [39]. In the scRNA-seq, tumor cells in cSCC 
showed four subpopulations, three recapitulating normal skin 
epidermis and a tumor-specific keratinocyte population unique 
to the cancer [39]. Integration analysis of the scRNA-seq and ST 
found that tumor-specific keratinocytes expressing epithelial-to-
mesenchymal signature were mainly located to the tumor leading 
edges with enrichment of adjacent stroma of fibrovascular niche, 
thus being a hub for intercellular communication [39]. Multi-
plexed ion beam imaging, ST technology at a single-cell level, 
was further performed for validation [39]. Next, an integrative 
study of scRNA-seq and ST were performed in two tumors from 
patients with pancreas ductal adenocarcinomas [40], wherehigh 
concordance was found between pathological annotation by his-
tological features and unsupervised clustering of ST data [40]. 
A statistical approach to overlap cell type-specific and tissue re-
gion-specific gene sets, called the multimodal intersection analy-
sis, was used for identification and mapping of cell-type subpop-
ulations across tissue regions [40]. A multimodal intersection 
analysis found that the subpopulations of ductal cells, macro-
phages, dendritic cells and cancer cells were spatially restricted [40]. 
Co-enrichment analysis of the multiple cell types found that in-
flammatory fibroblasts and cancer cells shared a stress-response 
gene module, which was further supported by a cancer genome 
database and immunofluorescence experiments [40]. 

These example studies in area of tissue pathology highlight 
the importance of integrated analysis of scRNA-seq and ST 
along with histopathological features, in which the integrated 

approach helps to overcome the limitations of any individual 
method [38-40]. These studies confirmed that, the cellular sub-
types in spatial spots by deconvolution or mapping from inte-
grated scRNA-seq and ST were concordant with the histological 
findings, supporting the robustness of the integrative analysis 
[38-40]. Also, spatially informed ligand-receptor analysis sug-
gested candidates of pivotal intercellular interactions in the path-
ological area of interest, which would lead to further mechanistic 
studies [38-40]. 

CONCLUSION

Integrated analysis of scRNA-seq and ST spatially maps cell 
subtypes identified from scRNA-seq to decipher how cell pop-
ulations are spatiotemporally participated in shaping tissue 
phenotypes. Such integration can also see the high-resolution 
maps of cellular subpopulations and intercellular interactions 
within the tissues, bridging the gap between the molecular char-
acterization of a disease by the transcriptomics and the classical 
histological approaches. Among various available options, the 
study methodology of scRNA-seq and ST should be carefully de-
signed and selected according to the biological questions. Espe-
cially for pathologists, coupling scRNA-seq and ST information 
with traditional morphological details will suggest novel insights 
for the molecular characterization as well as the cellular and spa-
tial context of a disease, which can help diagnose and manage the 
diseases. The analytic tools in ST are rapidly evolving, especially 
in the area of scRNA-seq and ST integration. Given the rapid 
development, we expect new methodologies of a genome-wide 
ST at high sensitivity with a real single-cell resolution. In addi-
tion, the future direction of this area would be multiple integra-
tive analyses of scRNA-seq and ST with other single-cell multi-
omics technologies such as the genome, chromatin accessibility, 
and DNA methylation sequencing [41-43].
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