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Bladder cancer is one of the most highly mutated tumors with 
recurrent mutations, creating potential therapeutic targets in 
the majority (69%) of patients [1]. Recently, personalized treat-
ments based on recurrent genetic alterations such as pan–fibro-
blast growth factor receptor (FGFR) inhibitors targeting FGFR3 
mutations and FGFR3/2 fusions have been emerging, where an 
accurate molecular diagnosis is a prerequisite for such personal-
ized treatment [2]. In addition, several agents such as human 
epidermal growth factor receptor 2 (HER2)–targeting antibody-
drug conjugates for HER2-overexpressing bladder cancer are 
under investigation in clinical trials with promising efficacy re-
ported [3,4].

Molecular tests such as targeted next-generation sequencing 

(NGS) are widely used not only to define disease-associated ge-
netic alterations for diagnostic purposes but also to find drug-as-
sociated clinically actionable targets for personalized medicine. 
As an initial step of NGS, an accurate assessment of the neo-
plastic cell percentage (NCP) is essential because solid tumors, 
including bladder cancer, contain a variable amount of non-neo-
plastic cells such as desmoplastic fibroblasts, inflammatory cells, 
vascular endothelial cells, and smooth muscle cells. Depending 
on the NCP, an NGS test may proceed or be canceled for some 
specimens, especially those with a low tumor content near the 
cutoff level of the test. This is because NGS testing with insuf-
ficient neoplastic cells may lead to false negative results, even in 
the presence of a variant, when the test is conducted despite in-
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adequate cellularity. Furthermore, an inappropriately assessed 
NCP produces noise and distorts the relationship between read 
counts, resulting in an inaccurate estimation of the copy number 
variation (CNV) in the NGS data [5]. 

NCP, also referred to as normal cell contamination, is defined 
as the fraction of cancer cells in a tumor. Currently, NCP is de-
termined by visual examination by pathologists of hematoxylin 
and eosin (H&E) stained slides of tumor sections [6,7]. However, 
these pathologist estimates have limited accuracy and a wide 
range of interobserver variation [6,8]. To resolve this challenge, 
several in silico methods were developed by using genomic, 
epigenomic, or transcriptomic profiles. Although they appear to 
be accurate and bypass the effort of pathologists, these molecular 
estimates are obtained only after sequencing and analysis of the 
corresponding molecular tests has been completed. It has also 
been shown that there is poor concordance between pathologist 
and molecular estimates of NCP and limited concordance be-
tween genomic and transcriptomic derived estimates [8,9].

In bladder cancer, the accurate measurement of NCP is a dif-
ficult task due to its wide range of histologic variation, including 
sarcomatous dedifferentiation, mucinous and glandular differ-
entiation, significant inflammatory cell infiltration, etc. The lack 
of an easily applicable and reproducible cell counting method 
that can be used as the ground truth value has hampered the de-
velopment of a method for NCP assessment. Multiplex immu-
nofluorescence (mIF) has been developed to simultaneously assess 
multiple biomarkers and allows a quantitative assessment of the 
tumor microenvironment, which consists of various immune 
cells and stromal cells in addition to tumor cells. Therefore, we 
assumed that mIF could be used for phenotyping and counting 
tumor cells, stromal cells, and immune cells in bladder cancer to 
provide a ground truth value of NCP, which is a prerequisite for 
the development of an accurate method of NCP assessment.

Artificial intelligence (AI) has emerged as a useful tool for 
quantitative and qualitative analyses of digital histopathology 
images [10]. AI-based quantitative image analysis has been re-
ported to be able to estimate NCP in breast cancer and lung can-
cer, but not in urinary tract cancer [11-13]. In the present study, 
we developed AI models using digital images of urinary tract 
malignancies and convolutional neural network (CNN) models. 
The performance of the AI models was evaluated using mIF-
driven NCP as ground truth values and compared to patholo-
gists’ estimates. The impact of AI models on the CNV of action-
able genes was analyzed in NGS cases. The workflow diagram of 
this study is shown in Fig. 1.

MATERIALS AND METHODS

Patients with urinary tract cancer

It included patients with pathologically confirmed urinary 
tract malignancies treated at Asan Medical Center, Seoul, Re-
public of Korea with available clinical information and pathol-
ogy materials, including H&E-stained slides and formalin-fixed, 
paraffin-embedded (FFPE) tissue blocks. Three cohorts were es-
tablished: a developmental cohort, a validation cohort, and an ap-
plication cohort. For the developmental cohort, 39 cases were se-
lected from 322 cases of invasive high-grade urothelial carcinoma 
diagnosed between March 2022 and August 2022 to create cell 
patches for the training of CNN models. The validation cohort 
consisted of 119 NGS cases, with samples collected between May 
2019 and February 2022, to validate the trained CNN models 
on cases similar to those in the clinical setting. The application 
cohort consisted of 41 NGS cases, with samples collected be-
tween March 2022 and August 2022, to evaluate the impact of 
AI-driven NCPs on the CNV of actionable genes identified by 
NGS analysis.  

       
Tissue microarray construction 

Tissue microarrays (TMAs) were generated in the validation 
cohort with 1 mm-diameter cores from 10% neutrally buffered 
FFPE tumor blocks using a tissue microarrayer (Quick-Ray, 
Unitma Co. Ltd., Seoul, Korea). To ensure that the TMA cores 
were representative of the validation cohort, three cores were col-
lected from tumor areas that were representative of the histologic 
type and grade of each case, while attempting to avoid necrotic 
areas [7]. Different tumor locations (peripheral vs. central) were 
included, and an attempt was made to ensure that NCPs were 
evenly distributed by including tumor cells of different cell den-
sities. To provide a negative control for AI-driven NCPs, areas 
without tumor cells were included. 

Multiplex IF and multispectral imaging analysis 

Four-micron-thick tissue sections were cut from the TMA 
construct; and then transferred onto plus-charged slides. mIF 
was performed using a Leica Bond Rx Automated Stainer (Leica 
Biosystems, Nussloch, Germany) and Opal Polaris 7-Color Au-
tomated immunohistochemistry (IHC) Detection Kit (Akoya 
Biosciences, Marlborough, MA, USA) as previously described 
[14]. After sequential reactions, the tissue sections were coun-
terstained with 4',6-diamidino-2-phenylindole (DAPI) for nu-
clear staining (62248, Thermo Scientific, Waltham, MA, USA) 
and mounted with ProLong Gold antifade reagent (P36935, In-
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vitrogen, Carlsbad, CA, USA). The primary antibodies used in 
this study were CD45 (1:200, DAKO, Santa Clara, CA, USA) 
for immune cells, α-smooth muscle actin (SMA; 1:100, Zymed, 
San Francisco, CA, USA) for stromal cells, and pan-cytokeratin 
(CK; 1:300, Novus Biologicals, Littleton, CO, USA) for tumor 
cells with corresponding fluorophores for fluorescence signals 
Opal 570, Opal 690, and Opal 780, respectively. The multiplex-
stained slides were scanned using a Vectra Polaris Automated 

Quantitative Pathology Imaging System (Akoya Biosciences), 
and the images were visualized with a Phenochart Whole Slide 
Viewer (Akoya Biosciences). Phenotyping of cellular compo-
nents in the images was performed using inForm image analysis 
software and the phenoptr/phenoptrReports tissue analysis soft-
ware packages (Akoya Biosciences). Based on the phenotyping, 
the mIF-driven NCP was calculated for each TMA core and used 
as the ground truth value.

Fig. 1. Study overview. Artificial intelligence (AI) models were trained using cell patches extracted from the images of H&E slides of the devel-
opmental cohort. Using the validation cohort, the AI models and pathologists separately assessed neoplastic cell percentage (NCP) in the 
H&E images and their performances were assessed by comparing their estimates to the multiplex immunofluorescence (mIF)–driven esti-
mates. The best AI model was applied to whole slide images (WSIs) of the application cohort to assess its impact on copy number variation 
(CNV). This figure was created with Biorender.com. 
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Whole-slide scanning

H&E slides from the developmental and validation cohorts 
were scanned with a PANNORAMIC 250 Flash II scanner (3D 
HISTECH, Budapest, Hungary) at 40× magnification with 
0.22 μm/pixel in a single layer. A Pathology Scanner SG300 
(Philips, Best, The Netherlands) was used at 40× magnification 
with 0.25 μm/pixel in a single layer for the application cohort.

Cell patch generation for CNN model training 

Scanned slides were assessed using open-source digital pathol-
ogy software, QuPath v. 3.4.2 [15]. The representative regions 
of interest, at least one per slide in the developmental cohort, 
were drawn by one (J.J.) of the authors. Cell nuclei were detected 
with star-convex polygons using the provided QuPath plugin to 
avoid incomplete segmentation of overlapping nuclei [16]. The 
detected cells were then manually classified into three classes: 
tumor cells, stromal cells, or immune cells. For each detected cell, 
100×100 pixel image patches were obtained with their class la-
bels. The extracted cell patches of the three classes were divided 
into the training set, tuning set, and test set, at a 7:2:1 ratio.

CNN model training and performance metrics

Cell patches in the training and tuning sets were transformed 
into tensors and augmented by Pytorch library ver. 1.12.1 [17]. 
Cell patches were provided to nine open-source CNN models 
provided by Pytorch. The models were AlexNet with five convo-
lutional layers and three fully connected layers [18], VGG with 
16 convolutional layers and three fully connected layers [19], 
ResNet with deep convolutional networks (50 layers) and resid-
ual learning [20], WideResNet with three increased width re-
sidual networks [21], EfficientNet with scaling of depth, width, 
and resolution [22], EfficientNet V2 optimized with training-
aware neural architecture search and scaling [23], MobileNet V2 
with inverted residual blocks [24], MobileNet V3 improved with 
network architecture search and tuning [25], and ShuffleNet V2 
focused on direct metrics such as speed [26]. The Adam optimizer 
was adopted with default hyperparameters (β1 = 0.9; β2 = 0.999; 
ε = 1.0×10-8) [27]. The Cross Entropy Loss function and Reduce 
LR On Plateau function were used as the loss function and learn-
ing rate scheduler, respectively. The batch size was set to 128 
and the learning epoch was set to 80. The models were comput-
ed by two GPUs, RTX 3090 (NVIDIA, Santa Clara, CA, USA).

The performance of the trained models was evaluated in the 
predetermined test set with the following parameters: sensitivi-
ty, specificity, precision, accuracy, and F1 score.

Estimation of NCP by pathologists and AI models 

In the validation cohort, six pathologists with varying levels 
of expertise estimated the NCP of each core using H&E-stained 
digital images of the TMA construct. The pathologists included 
one uropathologist (Y.M.C.), two fellows (S.U.J. and B.A.), and 
three residents (G.H.K., H.J.S., and Y.I.L.). They were instructed 
to estimate each individual TMA core by eyeball measurement, 
not by counting cells individually. They provided NCP estimates 
on a 5% scale, ranging from 0% to 100%. 

To obtain AI-driven NCPs, the trained CNN models were ap-
plied on the H&E-stained digital images of the validation and 
application cohorts. The models classified the cells into three 
classes (tumor, stroma, or immune cells), and provided AI-driven 
NCP estimates of each TMA core in the validation cohort and 
each whole slide image in the application cohort. 

Performance comparison of pathologists and AI models

The performance of pathologists and AI models in the valida-
tion cohort was evaluated by comparing them to mIF-driven 
NCP as the ground truth value using intraclass correlation coef-
ficients (ICCs) with ICC (2,1) as an individual estimator [28]. 
The ICC was interpreted as poor (< 0.40), fair (0.40–0.59), good 
(0.60–0.74), and excellent (0.75–1.00) as previously proposed 
[29,30]. 

Selecting significant inter-rater variation in the NCP 
assessment

To identify TMA cores with significantly different NCP values 
between pathologists and AI models compared to the mIF, the 
mean absolute error (MAE) was calculated using the following 
formula for each TMA core in the validation cohort. The TMA 
cores with the top 20 MAE values for each group, pathologist 
and AI model, were selected for further analysis.

MAE = ∑n
i=1 

|xi - m|
n

(xi, AI-driven NCP or pathologist NCP; m, mIF-driven NCP; 
n, number of estimations)

Copy number analysis

The NextSeq 550Dx Sequencing System (Illumina, San Di-
ego, CA, USA) and DNA-based targeted gene panel (Onco-
Panel AMC v4.3 panel) were used for NGS analysis as described 
previously [31-33]. The panel consisted of approximately 1.2 
Mbp with 33524 probes targeting 382 genes [31-33]. The tu-
mor area was macrodissected from FFPE tissue blocks and used 
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for DNA extraction. The copy number (CN) analysis was con-
ducted using CNVkit’s “batch” function [34]. The log2 ratio of 
the “cns” file in the analysis results had been utilized to calculate 
the estimated CN, using the NCP determined by a pathologist 
at initial diagnosis. The CN was re-evaluated by incorporating 
the AI-driven NCP.

The estimated CN was classified into three groups according 
to the Catalogue of Somatic Mutations in Cancer (COSMIC) [35]. 
The criteria for CNV were as follows: amplification, total CN ≥ 5; 
loss, total CN ≤ 0; neutral/minor alteration, total CN, 2–4 [36]. 
The impact of AI-driven NCP on CNV was assessed on the 166 
actionable genes for solid tumors listed at OncoKB, regardless of 
cancer type and level of evidence [37].

RESULTS

Patient cohorts

In the developmental cohort, 39 cases were selected to include 
various subtypes, divergent differentiations, image artifacts, and 
commonly encountered specimen types for the training of CNN 
models on various pathologic features of urothelial carcinoma 
(Supplementary Table S1) [38]. Twenty-seven cases were pure 
invasive urothelial carcinoma. The remaining cases showed var-
ious histologic features, either single or in combination and in-
cluded squamous (5 cases), sarcomatoid (3 cases), glandular (2 
cases), small cell neuroendocrine (2 cases), microcystic (1 case), 
poorly differentiated (1 case), and micropapillary (2 cases) fea-
tures (Table 1). 

In the validation cohort, in addition to 113 cases of invasive 
high-grade urothelial carcinoma, it contained collecting duct 
carcinoma (2 cases), urachal adenocarcinoma (2 cases), invasive 
squamous cell carcinoma (1 case), and non-invasive low-grade 
papillary urothelial carcinoma (1 case). Fifty-seven cases of uro-
thelial carcinoma were pure form and the others revealed various 
histologic features either isolated or in combination, including 
squamous (26 cases), micropapillary (24 cases), sarcomatoid (8 
cases), nested (4 cases), giant cell (3 cases), glandular (2 cases), 
plasmacytoid (2 cases), and microcystic (2 cases) features (Table 1).

In the application cohort, 21 cases were pure invasive urothe-
lial carcinoma and the remaining revealed squamous (8 cases), 
micropapillary (4 cases), sarcomatoid (3 cases), plasmacytoid (2 
cases), small cell neuroendocrine (2 cases), giant cell (1 case) fea-
tures, either single or in combination (Table 1). 

Development of CNN models and their performance

In the development cohort, a total of 291 regions of interest 

(median, 6; range, 1 to 22 per case) were selected, attempting 
to include various histologic features of urothelial carcinoma. A 
total of 133,941 cell patches were extracted, consisting of 76,330 
tumor cell patches, 24,297 stromal cell patches, and 33,314 im-
mune cell patches (Fig. 2). The image patches in the training and 
tuning sets were converted into tensors and subjected to augmen-
tation techniques such as random flipping, rotation, and padding 
to increase the diversity of the images for the generalization of 
the CNN models (Supplementary Fig. S1). These augmented 
patches were then fed into the nine CNN models to train them 

Table 1. Clinicopathologic characteristics of the study cohorts

Variable
Developmental 

cohort
(n = 39)

Validation 
cohort 

(n = 119)

Application 
cohort
(n = 41)

Sex
   Male 30 (76.9) 91 (76.5) 30 (73.2)
   Female 9 (23.1) 28 (23.5) 11 (26.8)
Age (yr) 72 (43–97) 67.5 (35–90) 68 (43–86)
Tumor location
   Urinary bladder 29 (74.4) 52 (43.7) 20 (48.8)
   Renal pelvis 4 (10.3) 19 (16.0) 11 (26.8)
   Ureter 6 (15.4) 33 (27.7) 8 (19.5)
   Othersa 0 15 (12.6) 2 (4.9)
Procedure
   Transurethral resection 26 (66.7) 23 (19.3) 10 (24.4)
   Curative surgeryb 13 (33.3) 86 (72.3) 23 (56.1)
   Endoscopic biopsy 0 1 (0.8) 8 (19.5)
   Metastatectomyc 0 9 (7.6) 0
2022 WHO grade
   Low 0 1 (0.8) 0
   High 39 (100) 113 (95.0) 41 (100)
Histologic variation
   None (pure form) 27 (62.8) 57 (47.9) 21 (50)
   Squamous 5 (11.6) 26 (21.8) 8 (19.0)
   Sarcomatoid 3 (7.0) 8 (6.7) 3 (7.1)
   Glandular 2 (4.7) 2 (1.7) 0
   Small cell 2 (4.7) 0 2 (4.8)
   Micropapillary 2 (4.7) 24 (20.2) 4 (9.5)
   Poorly differentiated 1 (2.3) 0 0
   Microcystic 1 (2.3) 2 (1.7) 0
   Othersd 0 9 (7.6) 4 (9.5)
   Nonurotheliale 0 5 (4.2) 0

Values are presented as median (range) or number (%).
WHO, World Health Organization.
aThis category includes urethra, regional lymph node, distant organ metas-
tasis, and kidney (for collecting duct carcinoma); bCurative surgery includes 
radical cystectomy, nephroureterectomy, distal ureterectomy, and partial 
cystectomy specimens; cMetastectomy sites are lymph nodes, peritoneum, 
adrenal gland, and lung; dIn the validation cohort, invasive urothelial carci-
noma with nested (4 cases), giant cell (3 cases), and plasmacytoid (2 cas-
es) features were included. In the application cohort, plasmacytoid (3 cas-
es) and giant cell (1 case) features were included; eNon-urothelial carcinoma 
includes collecting duct carcinoma, urachal adenocarcinoma, and pure 
squamous cell carcinoma cases.
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to classify cell patches into the three specified classes. 
When the model performance was evaluated at the patch lev-

el using the test set, EfficientNet showed the highest sensitivity 
(0.94) and accuracy (0.87). AlexNet and VGG demonstrated 
low accuracy (0.55, each) and therefore were excluded from fur-
ther analysis (Table 2).

Calculation of mIF-driven NCP as the ground truth value

In the TMA construct generated from the validation cohort, 
335 cores were available for mIF staining of pan-cytokeratin, 
CD45, and SMA (Fig. 3). The proportion of cells with a single 
immunophenotype, positive for only one marker, was 89.4%. 
The most common double-positive immunophenotype was dou-
ble-positivity for CD45 and SMA, accounting for 6.9% of the 
total cell count. This was followed by double-positivity for CK 
and SMA, accounting for 0.4% of the total cell count (Supple-
mentary Table S2). Since only tumor cells were used to estimate 
NCP, not immune and stromal cells, it was calculated by divid-
ing the number of cytokeratin-positive tumor cells by the total 
number of DAPI-positive cells. The median NCP of the TMA 
cores was 51% (range, 0% to 99%) (Supplementary Fig. S2). 

Fifteen cores contained no tumor cells and 71 cores contained an 
NCP less than 20%, which is the cutoff value generally consid-
ered adequate for reliable mutation detection in NGS testing. 
There were no significant differences in the mIF-driven NCP es-
timates between tumor locations, procedures, or histology sub-
types (data not shown). 

Fig. 2. Cell patch generation in the developmental cohort. (A) A region of interest (ROI) is manually selected in each digitally scanned whole 
H&E slide image. (B–D) On the high-magnification view of an ROI (B), nuclei are segmented by a yellow outline (C), then they are manually 
classified into tumor cells in red, stromal cells in blue, and immune cells in bright yellow (D). (E–G) Examples of extracted 100 × 100-pixel im-
age patches: (E) a stromal cell, (F) a tumor cell, and (G) an immune cell.

A

C G

F

E

D

B

Table 2. Performance metrics of the nine CNN models in the de-
velopment cohort

Model Sensitivity Specificity Precision Accuracy F1-score

AlexNet 1.0 0.0 0.55 0.55 0.71
VGG 1.0 0.0 0.55 0.55 0.71
EfficientNet 0.94 0.88 0.90 0.87 0.92
EfficientNet V2 0.93 0.87 0.90 0.86 0.91
MobileNet V2 0.92 0.86 0.89 0.85 0.90
MobileNet V3 0.92 0.86 0.89 0.86 0.90
ResNet 0.92 0.88 0.90 0.86 0.91
WideResNet 0.92 0.89 0.91 0.86 0.91
ShuffleNet V2 0.93 0.87 0.89 0.86 0.91

CNN, convolutional neural network.
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Assessment of NCP by pathologists and AI models with 
comparison to mIF-driven NCP

The pathologists estimated the NCP of the TMA cores from 
the validation cohort with excellent reliability. The ICC values 
were within a range of 0.78 to 0.91, with the uropathologist 
estimating NCP with the highest reliability, 0.91 (95% confi-
dence interval [CI], 0.89 to 0.93) (Table 3). 

AI models also estimated NCP with excellent reliability, with 
ICCs ranging from 0.83 to 0.88. The most reliable model was 
EfficientNet with an ICC of 0.88 (95% CI, 0.78 to 0.92) (Table 
3). MobileNet V3 showed the lowest agreement with the mIF-
driven NCP with an ICC of 0.82 (95% CI, 0.7 to 0.88) (Table 3). 

       
Performance comparison between AI models and 
pathologists 

In general, the AI models showed a higher level of agreement 
with the mIF-driven NCP than did the pathologists, although 
the one uropathologist had the highest agreement of all raters. 
Even the lowest AI model, MobileNet V3, had a higher or sim-
ilar level of agreement than all but one of the pathologists (Ta-
ble 3). When the distribution of NCP estimates by the six indi-
vidual pathologists and seven AI models were assessed for each 
TMA core, pathologists’ NCP estimates were more variable in 
each range of NCP than AI-driven NCP estimates. However, the 
AI models tended to underestimate NCP when the mIF esti-
mates were greater than 60% (Supplementary Fig. S3). They of-
ten misclassified neoplastic cells as stromal or immune cells when 
their nuclei became spindle-shaped or pyknotic due to degener-
ation, detachment from the epithelium, cauterization, and/or 
abundant cytoplasm. (Supplementary Table S3, Supplementary 
Fig. S4).

Performance comparison between AI models and 
pathologists according to histological variation

To evaluate the accuracy of NCP assessment according to his-
tological variation, we divided the validation cohort into three 
groups: the pure form of urothelial carcinoma without divergent 
differentiation/subtype, urothelial carcinoma with divergent dif-
ferentiation/subtype, and non-urothelial carcinoma, which in-
cluded squamous cell carcinoma and urachal adenocarcinoma. 
The performance was measured against mIF-driven NCP (Sup-
plementary Table S4).

The estimation of NCP by pathologists was excellent with 
and without divergent differentiation/subtype (minimum ICC, 
0.76 and 0.82, respectively), but the performance was decreased 

Fig. 3. Multiplex immunofluorescence (mIF). (A) Images of the H&E staining and (B) the corresponding mIF staining of a representative tissue 
microarray core from the validation cohort. (C) In the high-magnification view of (B), intratumoral lymphocytes are highlighted (arrow). (B, C) 
Blue, DAPI; green, pan-cytokeratin; red, α-smooth muscle actin; yellow, CD45.

A B C

Table 3. Agreement between pathologist and AI-driven NCP on 
mIF-driven NCP in the validation cohort

Rater ICC 95% CI

Pathologist
   Uropathologist 0.91 0.89–0.93
   Fellow 1 0.80 0.53–0.89
   Fellow 2 0.82 0.78–0.85
   Resident 1 0.78 0.72–0.83
   Resident 2 0.82 0.78–0.85
   Resident 3 0.81 0.73–0.86
AI models
   EfficientNet 0.88 0.78–0.92
   EfficientNet V2 0.87 0.84–0.89
   MobileNet V2 0.87 0.85–0.90
   MobileNet V3 0.82 0.70–0.88
   ResNet 0.86 0.76–0.91
   WideResNet 0.85 0.80–0.88
   ShuffleNet V2 0.83 0.74–0.88

AI, artificial intelligence; NCP, neoplastic cell percentage; mIF, multiplex im-
munofluorescence; ICC, intraclass correlation coefficient; CI, confidence in-
terval.
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in non-urothelial carcinoma (minimum ICC, 0.61). The AI mod-
els demonstrated better or similar performance than the patholo-
gists in cases of urothelial carcinoma, both with and without di-
vergent differentiation/subtype (minimum ICC, 0.87 and 0.81, 
respectively). However, the performance of the AI models was 
markedly decreased in non-urothelial carcinoma cases, showing 
lower agreement (minimum ICC, 0.33) with mIF-driven NCP 
than those of pathologists (Supplementary Table S4).

       
Analysis of highly discrepant cases in NCP estimation 

The top 20 TMA cores with high disagreement among pa-
thologists showed abundant stroma (n = 5), large tumor cells 
with abundant cytoplasm (n = 4), cauterization artifact (n = 2), 
dense infiltration of inflammatory cells (n = 2), keratinization 
(n = 1), and mucinous histology (n = 1). Inaccurate assessment of 
mIF-driven NCP also resulted in high inter-pathologist discrep-
ancies and was noted in cores with suboptimal cytokeratin stain-
ing (n = 3), degeneration (n = 1), and normal lung tissue (n = 1).

The top 20 TMA cores with high disagreement among the 
AI-models was noted in cores with cauterization (n = 5), abun-
dant stroma (n = 3), spindling of tumor nuclei (n = 3), dense infil-
tration of inflammatory cells (n = 2), mucinous histology (n = 2), 
hypocellular stroma (n = 1), keratinization (n = 1), and abundant 
cytoplasm of tumor cells (n = 1). Inaccurate assessment of mIF-
driven NCP was also noted in cores with suboptimal cytokera-
tin staining (n = 2) (Fig. 4). 

Impact of AI-driven NCP estimation on CNV

In the application cohort, a total of 785 CNVs (median, 16; 
range 1 to 120 per case) were reported at initial diagnosis with 
173 amplifications (22.0%), 77 losses (9.8%), and 535 neutral/
minor alterations (68.2%). 

AI-driven NCP was assessed using EfficientNet, which had 
the highest correlation with mIF. After applying the AI-driven 
NCP, 595 CNVs (75.8%) remained in the original groups and 
190 (24.2%) were reclassified, resulting in 200 amplifications 
(25.5%), 80 losses (10.2%), and 505 neutral/minor alterations 
(64.3%). The 190 CNVs were reclassified into 66 amplifica-
tions (8.4%), 46 losses (5.9%), and 78 neutral/minor alterations 
(9.9%). Of note, 108 neutral/minor alterations (13.8%) at ini-
tial diagnosis were reclassified into either amplification (n = 64, 
8.2%) or loss (n = 44, 5.6%) with the AI-driven NCPs, while 
neutral/minor alterations were reduced by 5.6%. Among the 
77 CN losses at initial diagnosis, 41 (53.2%) were reclassified 
into neutral/minor alterations (Fig. 5, Supplementary Fig. S5). 

Among the reclassified 190 CNVs, 55 CNVs belonged to ac-

tionable genes with 16 CNVs reclassified to amplification from 
loss or neutral/minor alteration and 16 CNVs reclassified to loss 
from amplification or neutral/minor alteration. The genes of 16 
CNVs had therapeutic drugs associated with the corresponding 
CNV. 

DISCUSSION

Here we report that AI models for NCP estimation in urinary 
tract cancer could be developed using open-source CNN mod-
els. The performance of the AI models was comparable to or bet-
ter than that of pathologists. The application of the AI models 
reclassified a significant proportion of CNVs, with an increase 
of CN amplifications and losses and a decrease in neutral/minor 
CN alterations. In addition, we showed that mIF staining could 
be used to calculate NCP as a ground truth value for the devel-
opment of AI models. 

Since the estimation of NCP is critical for accurate interpre-
tation of NGS results, which are important for treatment deci-
sion making, it has been recommended that NCP estimation 
should be performed by the pathologist evaluating the case by 
selecting the area with the highest density of viable neoplastic 
cells and avoiding areas with inflammatory cells, necrosis, des-
moplastic stroma, and mucus [7]. Since there is significant inter-
pathologist variation in NCP estimates [39], innovative tech-
niques such as in silico analysis and digital estimation have been 
developed to overcome this issue. However, in order to develop 
new technologies, accurate NCPs must be available for use as a 
ground truth value, but obtaining this ground truth value has 
been a challenge. There has been limited study using mIF to ob-
tain ground truth values, while IHC was used to create a ground 
truth value generated by manual annotation of tumor cells with 
reference to immunostained slides with thyroid transcription 
factor-1and napsin A for NCP in lung cancer [40]. 

Our study applied mIF as a new method for calculating NCP 
and used the mIF-driven estimates as a ground truth value, 
which is generally reliable but needs improvement. The cyto-
plasm stained for cytokeratin in tumor cells and CD45 in im-
mune cells circumferentially surrounded the nuclei, so tumor 
cells and immune cells were easily immunophenotyped, but 
SMA staining was difficult to evaluate because the cell shapes 
were elongated and curved. Occasionally, cytoplasm outside the 
cross-section containing the nucleus interspersed between other 
cell types may appear as double/triple positive cells. In addition, 
cell types that cannot be defined by the three antibody types, 
such as neuronal cells, may be counted as unphenotyped cells. 
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Nevertheless, the unphenotyped mesenchymal cells and double-
positive cells for CD45 and ɑSMA did not affect NCP estima-
tion because only cytokeratin-positive tumor cells among the 
total DAPI-positive nuclei were calculated for NCP estimation. 
The CK and SMA double-positive cells, which may represent 
myofibroblasts, were low at 0.4% of the total cell count with an 
insignificant impact on NCP. Suboptimal cytokeratin staining 
was noted in few TMA cores and resulted in inaccurate estimates 
of mIF-driven NCP, which needs to be improved by further de-
velopment of the mIF technique and image analysis software. In 

addition, NCP assessment should be performed on a well-pre-
served representative viable tumor area, avoiding tissue degen-
eration and cauterization artifacts. 

After applying the AI-driven estimates in the application co-
hort, a significant proportion of cases were recategorized to have 
amplification or loss of CN on actionable target genes with a de-
crease of neutral/minor CN alteration, which would affect deci-
sion making for targeted drugs. It is worth noting that the ma-
jority of the CN loss at initial diagnosis was reclassified into the 
neutral/minor CN alteration group after applying AI-driven 

Fig. 4. Examples of high mean absolute error cores for neoplastic cell percentage (NCP) estimation. (A–C) Abundant stroma (multiplex im-
munofluorescence [mIF], 28%; pathologist NCP, 5%–30%; artificial intelligence [AI] models, 23%–44%). (D–F) Cauterization artifact (mIF, 
98%; pathologists, 0%–80%; AI models, 51%–76%). (G–I) Abundant cytoplasm in tumor cells (mIF, 43%; pathologists, 65%–90%; AI mod-
els, 33%–49%). B, E, and H are high-magnification images of the square inset area in A, D, and G, respectively, and the corresponding mIF 
images are C, F, and I, respectively. (C, F, I) Blue, DAPI; green, pan-cytokeratin; red, α-smooth muscle actin; yellow, CD45.
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NCP estimates, implying that assigning CN loss should be cau-
tious during CNV interpretation. 

As previously pointed out, a wide range of inter-pathologist 
variation was observed for samples with dense or scattered lym-
phocytic infiltrates or with mucinous stroma [39]. In addition, 
this study demonstrates that abundant stroma, cauterization 
and/or crush artifacts, and tumor cells with non-classic mor-
phology, such as abundant cytoplasm and histologic subtypes, 
may lead to an inaccurate estimation of NCP and should be 
carefully evaluated.  

Although the AI models were developed using limited train-
ing data from the developmental cohort, they provided reliable 
estimates of NCP in the validation cohort with a larger number 
of cases and a more diverse range of histological features. The AI 
model could also be applied to the digital images with variations 
in the quality of H&E slides scanned by different whole slide 
image scanners in the application cohort. The developmental co-
hort consisted of invasive urothelial carcinoma cases and the AI 
models were not specifically trained on non-urothelial carcinoma 
cases such as mucinous adenocarcinoma. Nevertheless, the AI 
models showed fair to good reliability, although their perfor-
mance was significantly reduced compared to urothelial carcino-
ma cases. This suggests that the models have a degree of gener-
alizability across diverse tumor morphologies of urinary cancers. 
However, it is also worth noting that the AI model underesti-
mated NCP in cases with a higher NCP, indicating a need for 
further improvement of the model, especially when tumor tis-

sues contained cauterization artifacts, or neoplastic cells with 
spindled or pyknotic nuclei, or abundant cytoplasm. The AI mod-
els could be improved if they were been trained on a dataset con-
taining more of these features. While the performance of older AI 
models such as AlexNet and VGG was less satisfactory in clas-
sifying tumor cell patches, newer AI models with various levels 
of computational resources and cognitive abilities performed 
similarly, with accuracies above 0.85, and none of them showed 
a particularly superior performance. 

This present study was associated with limitations, including 
its retrospective design and nature as a single-center study with 
a small number of cases. The uropathologist evaluation was excel-
lent, but it is hard to generalize because it was only one person. 
In the future, these AI models need to be validated by a prospec-
tive multicenter study with a larger number of cases and partic-
ipating pathologists. Further advances in mIF technology and 
in computational pathology will continue to increase the accu-
racy of AI models.

Supplementary Information
The Data Supplement is available with this article at https://doi.org/10.4132/
jptm.2024.07.13. 
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Fig. 5. A Sankey diagram showing the copy number variation of the initial diagnosis (left) and that after incorporation of artificial intelligence–
driven neoplastic cell percentage (right).
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