Skip Navigation
Skip to contents

J Pathol Transl Med : Journal of Pathology and Translational Medicine

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "Killer cells, natural"
Filter
Filter
Article category
Keywords
Publication year
Authors
Original Articles
EBV-Positive T/NK-Cell Lymphoproliferative Disease of Childhood
Mineui Hong, Young Hyeh Ko, Keon Hee Yoo, Hong Hoe Koo, Seok Jin Kim, Won Seog Kim, Heejung Park
Korean J Pathol. 2013;47(2):137-147.   Published online April 24, 2013
DOI: https://doi.org/10.4132/KoreanJPathol.2013.47.2.137
  • 12,971 View
  • 110 Download
  • 25 Crossref
AbstractAbstract PDF
Background

Epstein-Barr virus (EBV)-associated hemophagocytic lymphohistiocytosis (HLH), EBV-positive systemic T-cell lymphoproliferative disease (STLPD) of childhood, and chronic active EBV (CAEBV) infection may develop after primary EBV infection. This study reviewed the clinicopathological spectrum of EBV-associated T- and natural killer (NK)-cell LPD, including STLPD and CAEBV infection, with an analysis of T-cell clonality.

Methods

Clinicopathological features of seven patients with EBV-associated HLH or STLPD and 12 patients with CAEBV infection were reviewed. Immunohistochemical staining and a T-cell receptor (TCR) gene rearrangement study were performed.

Results

STLPD and EBV-positive HLH showed significantly overlapping clinicopathological findings. One patient with STLPD and one patient with EBV-positive HLH demonstrated moderate to severe atypia of the infiltrating lymphocytes, whereas the remaining patients lacked significant atypia. Twelve patients had CAEBV infection, four of whom suffered mosquito-bite hypersensitivity, five showed NK lymphocytosis, and one suffered hydroa vacciniforme. Infiltrating lymphocytes were predominantly small and devoid of atypia. Hemophagocytic histiocytosis was found in seven of 11 patients. Monoclonality was detected in three (50%) of the six patients with successful TCR gene analysis.

Conclusions

EBV-positive HLH and STLPD share similar clinicopathological findings and may constitute a continuous spectrum of acute EBV-associated T- or NK-cell proliferative disorders. The distinction of EBV-positive T-cell LPD from EBV-positive HLH may be difficult during routine diagnoses because of the technical limitations of clonality assessment.

Citations

Citations to this article as recorded by  
  • An update on Epstein-Barr virus–and human T-lymphotropic virus type-1–induced cutaneous manifestations. CME Part II
    Alejandro A. Gru, Jose A. Plaza, Jose A. Sanches, Denis Miyashiro, Omar P. Sangueza, Francisco Bravo Puccio, Sonia Toussaint, J. Martin Sangueza
    Journal of the American Academy of Dermatology.2023; 88(5): 983.     CrossRef
  • The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms
    Rita Alaggio, Catalina Amador, Ioannis Anagnostopoulos, Ayoma D. Attygalle, Iguaracyra Barreto de Oliveira Araujo, Emilio Berti, Govind Bhagat, Anita Maria Borges, Daniel Boyer, Mariarita Calaminici, Amy Chadburn, John K. C. Chan, Wah Cheuk, Wee-Joo Chng,
    Leukemia.2022; 36(7): 1720.     CrossRef
  • Chronic active Epstein–Barr virus enteritis: A literature review
    Yang Shen, Yu Fang Wang
    Journal of Digestive Diseases.2022; 23(5-6): 248.     CrossRef
  • EBV-Associated Lymphoproliferative Disorders
    Young Hyeh Ko
    Clinical Pediatric Hematology-Oncology.2021; 28(1): 14.     CrossRef
  • Clinicopathologic findings of chronic active Epstein–Barr virus infection in adults: A single-center retrospective study in China
    Jing Lin, Haicong Wu, Lei Gu, Xia Wu, Miaofang Su, Haiyan Lin, Bang Liu, Jiaolong Zheng, Xuan Mei, Dongliang Li
    Clinical and Experimental Medicine.2021; 21(3): 369.     CrossRef
  • Outcome of L-DEP regimen for treatment of pediatric chronic active Epstein–Barr virus infection
    Honghao Ma, Liping Zhang, Ang Wei, Jun Yang, Dong Wang, Qing Zhang, Yunze Zhao, Sitong Chen, Hongyun Lian, Li Zhang, Chunju Zhou, Maoquan Qin, Zhigang Li, Tianyou Wang, Rui Zhang
    Orphanet Journal of Rare Diseases.2021;[Epub]     CrossRef
  • Epstein-Barr virus NK and T cell lymphoproliferative disease: report of a 2018 international meeting
    Jeffrey I. Cohen, Keiji Iwatsuki, Young-Hyeh Ko, Hiroshi Kimura, Irini Manoli, Koichi Ohshima, Stefania Pittaluga, Leticia Quintanilla-Martinez, Elaine S. Jaffe
    Leukemia & Lymphoma.2020; 61(4): 808.     CrossRef
  • EBV-positive T/NK-associated lymphoproliferative disorders of childhood: A complete autopsy report
    JonathanY Keow, WilliamM Stecho, AaronR Haig, NikhilA Sangle
    Indian Journal of Pathology and Microbiology.2020; 63(1): 78.     CrossRef
  • Chronic active Epstein‐Barr virus infection: A heterogeneous entity requiring a high index of suspicion for diagnosis
    Sarah L. Ondrejka, Eric D. Hsi
    International Journal of Laboratory Hematology.2020; 42(S1): 99.     CrossRef
  • Epstein-Barr Virus-Associated T and NK-Cell Lymphoproliferative Diseases
    Wook Youn Kim, Ivonne A. Montes-Mojarro, Falko Fend, Leticia Quintanilla-Martinez
    Frontiers in Pediatrics.2019;[Epub]     CrossRef
  • A clinicopathologic study of the spectrum of systemic forms of EBV‐associated T‐cell lymphoproliferative disorders of childhood: A single tertiary care pediatric institution experience in North America
    Amy M. Coffey, Annisa Lewis, Andrea N. Marcogliese, M. Tarek Elghetany, Jyotinder N. Punia, Chung‐Che Chang, Carl E. Allen, Kenneth L. McClain, Amos S. Gaikwad, Nader Kim El‐Mallawany, Choladda V. Curry
    Pediatric Blood & Cancer.2019;[Epub]     CrossRef
  • Unusual lymphoid malignancy and treatment response in two children with Down syndrome
    Ashley Geerlinks, Jennifer Keis, Bo Ngan, Amer Shammas, Reza Vali, Johann Hitzler
    Pediatric Blood & Cancer.2019;[Epub]     CrossRef
  • EBV-Positive Lymphoproliferations of B- T- and NK-Cell Derivation in Non-Immunocompromised Hosts
    Stefan Dojcinov, Falko Fend, Leticia Quintanilla-Martinez
    Pathogens.2018; 7(1): 28.     CrossRef
  • Cutaneous Hematolymphoid and Histiocytic Proliferations in Children
    Alejandro A Gru, Louis P Dehner
    Pediatric and Developmental Pathology.2018; 21(2): 208.     CrossRef
  • Clinicopathological categorization of Epstein–Barr virus-positive T/NK-cell lymphoproliferative disease: an analysis of 42 cases with an emphasis on prognostic implications
    Jin Ho Paik, Ji-Young Choe, Hyojin Kim, Jeong-Ok Lee, Hyoung Jin Kang, Hee Young Shin, Dong Soon Lee, Dae Seog Heo, Chul-Woo Kim, Kwang-Hyun Cho, Tae Min Kim, Yoon Kyung Jeon
    Leukemia & Lymphoma.2017; 58(1): 53.     CrossRef
  • Cutaneous EBV-related lymphoproliferative disorders
    Alejandro A. Gru, Elaine S. Jaffe
    Seminars in Diagnostic Pathology.2017; 34(1): 60.     CrossRef
  • T- and NK-Cell Lymphomas and Systemic Lymphoproliferative Disorders and the Immunodeficiency Setting
    Dita Gratzinger, Daphne de Jong, Elaine S. Jaffe, Amy Chadburn, John K. C. Chan, John R. Goodlad, Jonathan Said, Yasodha Natkunam
    American Journal of Clinical Pathology.2017; 147(2): 188.     CrossRef
  • Systemic Epstein-Barr Virus-positive T-Cell Lymphoproliferative Disease of Childhood With Good Response to Steroid Therapy
    Do-Hoon Kim, Myungshin Kim, Yonggoo Kim, Kyungja Han, Eunhee Han, Jae Wook Lee, Nack-Gyun Chung, Bin Cho
    Journal of Pediatric Hematology/Oncology.2017; 39(8): e497.     CrossRef
  • Recent advances in the risk factors, diagnosis and management of Epstein-Barr virus post-transplant lymphoproliferative disease
    Paibel Aguayo-Hiraldo, Reuben Arasaratnam, Rayne H. Rouce
    Boletín Médico del Hospital Infantil de México.2016; 73(1): 31.     CrossRef
  • Severe Epstein–Barr virus infection in primary immunodeficiency and the normal host
    Austen J. J. Worth, Charlotte J. Houldcroft, Claire Booth
    British Journal of Haematology.2016; 175(4): 559.     CrossRef
  • Recent advances in the risk factors, diagnosis and management of Epstein-Barr virus post-transplant lymphoproliferative disease
    Paibel Aguayo-Hiraldo, Reuben Arasaratnam, Rayne H. Rouce
    Boletín Médico Del Hospital Infantil de México (English Edition).2016; 73(1): 31.     CrossRef
  • Epstein-Barr Virus–Associated Lymphomas
    Ewelina Grywalska, Jacek Rolinski
    Seminars in Oncology.2015; 42(2): 291.     CrossRef
  • Epstein–Barr virus-associated T/natural killer-cell lymphoproliferative disorder in children and young adults has similar molecular signature to extranodal nasal natural killer/T-cell lymphoma but shows distinctive stem cell-like phenotype
    Siok-Bian Ng, Koichi Ohshima, Viknesvaran Selvarajan, Gaofeng Huang, Shoa-Nian Choo, Hiroaki Miyoshi, Norio Shimizu, Renji Reghunathan, Hsin-Chieh Chua, Allen Eng-Juh Yeoh, Thuan-Chong Quah, Liang-Piu Koh, Poh-Lin Tan, Wee-Joo Chng
    Leukemia & Lymphoma.2015; 56(8): 2408.     CrossRef
  • Hemophagocytic syndromes — An update
    Gritta E. Janka, Kai Lehmberg
    Blood Reviews.2014; 28(4): 135.     CrossRef
  • Epstein–Barr virus‐associated T/natural killer‐cell lymphoproliferative disorders
    Sanghui Park, Young H. Ko
    The Journal of Dermatology.2014; 41(1): 29.     CrossRef
Association of CD57+ Natural Killer Cells with Better Overall Survival in DLBCL Patients.
Jeong Hyeon Lee, Yoon Jin Kwak, Chul Hwan Kim, Insun Kim
Korean J Pathol. 2011;45(4):361-370.
DOI: https://doi.org/10.4132/KoreanJPathol.2011.45.4.361
  • 2,604 View
  • 22 Download
  • 1 Crossref
AbstractAbstract PDF
BACKGROUND
Malignant tumor cells may evoke the innate and adaptive immune systems. Various immune cells are involved in this immune reaction, and tumor infiltrating lymphocytes, macrophages, natural killer (NK) cells are associated with patient prognosis for solid tumors.
METHODS
Seventy-eight patients who were diagnosed with diffuse large B cell lymphoma (DLBCL) between 2001 and 2009 were selected. CD57+ NK cells, CD68+ tumor associated macrophages (TAMs), and CD4+ and CD8+ T cells were evaluated in tissue sections using immunohistochemical staining and compared with clinical parameters including age, gender, performance status, clinical stage, serum lactic dehydrogenase level, number of extranodal sites, international prognostic index score, chemotherapy response, and survival.
RESULTS
Patients with high numbers of CD57+ NK cells had a significantly higher overall survival rate than patients with low numbers of CD57+ NK cells. However, no significant difference was observed between the number of CD57+ NK cells and other prognostic parameters. The number of CD68+ TAMs and CD4+ or CD8+ T cells was not significantly correlated with prognostic factors in patients with DLBCL.
CONCLUSIONS
An evaluation of tumor infiltrating CD57+ NK cells is recommended as a prognostic indicator in patients with DLBCL.

Citations

Citations to this article as recorded by  
  • The prognostic value of tumor-associated macrophages detected by immunostaining in diffuse large B cell lymphoma: A meta-analysis
    Mei Lin, Shupei Ma, Lingling Sun, Zhiqiang Qin
    Frontiers in Oncology.2023;[Epub]     CrossRef

J Pathol Transl Med : Journal of Pathology and Translational Medicine