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Advancing pathology through sixty volumes: reflections

and future directions

Chan Kwon Jung', So Yeon Park?, Soon Won Hong’

'Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
’Department of Pathology, Seoul National University College of Medicine, Seoul, Korea

*Department of Pathology, Yonsei University College of Medicine, Seoul, Korea

INTRODUCTION

The publication of Volume 60 of the Journal of Pathology and
Translational Medicine (JPTM) represents a distinguished
scholarly milestone—one that invites both commemoration
and renewed commitment. Sixty volumes of continuous pub-
lication embody more than chronological achievement; they
reflect decades of scientific effort, organizational dedication,
and a sustained aspiration to contribute meaningfully to the
advancement of pathology.

A BRIEF HISTORICAL REFLECTION

The origins of JPTM date to 1967, when The Korean Journal of
Pathology was founded as the official journal of the Korean So-
ciety of Pathologists [1,2]. For many years, it served as the pri-
mary venue for surgical pathology and experimental pathology
research within Korea. In response to the growing importance
of cytology as a diagnostic discipline, the Korean Journal of Cy-
topathology was launched in 1990, and the two journals were
published in parallel for nearly two decades [3].

A major structural transformation occurred in 2009, when
the two journals were unified into a single publication repre-
senting both the Korean Society of Pathologists and the Korean
Society for Cytopathology [3]. As part of the merger agreement,
the unified journal retained the name The Korean Journal of
Pathology, preserving continuity and reflecting the longer pub-

lishing history of the parent title [3]. A dual editorial leadership
system was introduced, with each society appointing its own
Editor-in-Chief—one responsible for manuscripts in surgical
and experimental pathology, and the other responsible for man-
uscripts in cytopathology [3]. This structure ensured a balanced
representation of both disciplines. The two academic societies
also agreed to jointly support publication and operational costs
in a 7:3 ratio, reflecting the proportional distribution of content.

A significant milestone in international visibility came earli-
er, when the journal was indexed in the Science Citation Index
Expanded (SCIE) with Volume 41, Issue 1 in 2007 [4], a status
maintained through Volume 47, Issue 6 in 2013. Although the
journal was later removed from the SCIE list, this experience
underscored the importance of heightened editorial rigor and
deeper international engagement.

A series of transformative changes followed. The adoption of
an all-English format in 2011 broadened international accessibil-
ity and encouraged global submissions. In 2015, the journal ad-
opted its present title, the Journal of Pathology and Translational
Medicine (JPTM), signaling an expanded scope encompassing
pathology, molecular diagnostics, and translational science. In
2017, JPTM was indexed in the Emerging Sources Citation In-
dex (ESCI), reinforcing its growing international standing and
improving its discoverability within global scholarly databases.

These developments were not merely administrative adjust-
ments; instead, they mirrored broader shifts across pathology,
including the rise of molecular diagnostics, integrated trans-
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lational research, and the adoption of advanced imaging and
computational technologies. Throughout these transitions,
the journal refined its identity to reflect the evolving scientific
landscape. Notably, since its inaugural issue, JPTM has upheld
an uninterrupted tradition of timely publication, releasing ev-
ery issue on schedule for six decades—an achievement made
possible by the sustained dedication of its editorial leadership
and contributing societies.

Now in Volume 60, JPTM stands on 60 years of continuous
publication. Recent progress reflects steady and measurable
growth. The journal is currently indexed in ESCI and has
achieved a 2024 Journal Impact Factor of 3.0 and a 2024 Cite-
Score of 3.4. These metrics indicate that JPTM’s publications
are increasingly cited by researchers worldwide and that their
relevance within the global pathology community continues to
deepen.

In addition to these measurable indicators of growth, the
journal’s trajectory over the past 60 years has been significantly
shaped by the dedication and scholarly leadership of its Ed-
itors-in-Chief (Table 1). Their collective efforts have guided
JPTM through major transitions, including the integration of cy-
topathology, the unification of the two journals in 2009, the shift
to an all-English format, the adoption of the current title, and its
evolution into a globally recognized open-access platform. The
continuity, stability, and integrity of JPTM are largely due to the
vision, commitment, and stewardship of these individuals.

As JPTM continues to strengthen its scientific presence, it
does so within a broader publishing ecosystem marked by sub-

stantial geographic imbalances.

THE CRUCIAL ROLE OF JPTM IN A
WESTERN-DOMINATED PUBLISHING
WORLD

Although numerous pathology journals exist worldwide, the
global publishing environment remains heavily concentrated
in North America and Western Europe, where long-established
academic societies and commercial publishers shape both ed-
itorial standards and scientific priorities. This concentration
has notable implications for researchers outside these regions,
particularly those in Asia, who often face structural barriers
to gaining representation in high-impact Western journals.
Differences in disease epidemiology, clinical practice patterns,
research priorities, and writing conventions can reduce the

likelihood that regionally meaningful studies are prioritized

Reflections and future directions in JPTM

or accepted. The rapid growth of biomedical research in Asia,
driven by large patient populations, diverse disease profiles, and
advancing technological capabilities, often outpaces the capaci-
ty of Western-centered publication systems to accommodate it.

Economic barriers add further inequities. The global shift to
open-access publishing has increased scientific accessibility, yet
the associated article processing charges are frequently prohibi-
tive for authors without substantial institutional or governmen-
tal support. These costs disproportionately burden early-career
investigators and scientists working in resource-limited envi-
ronments.

Within this landscape, JPTM fulfills an essential and irre-
placeable role. As a fully open-access journal, JP'TM publishes
manuscripts without cost to authors—or at only minimal cost
for specific categories such as case studies—thereby ensuring
that access to publication is determined by scientific merit rath-
er than financial capacity. At the same time, the journal main-
tains rigorous peer review, broad scientific scope, and growing
international reach, providing a high-quality platform for re-
search across all areas of pathology and translational medicine.

By lowering both structural and economic barriers, JPTM
enhances the global visibility of scientific work originating in
Asia, enriches international literature with findings relevant to
diverse populations and clinical environments, supports ear-
ly-career researchers seeking an equitable pathway into global
publishing, and contributes to a more balanced and represen-
tative scientific dialogue. In this regard, JPTM is not merely
another pathology journal; it is an essential platform that coun-
terbalances Western-dominated publication structures and

advances global scientific communication.

SUSTAINING INTERNATIONAL REACH
AND CROSS-REGIONAL
DIALOGUE

Although the journal’s origins are rooted in Korea, its mission
has long been global in scope. The rapid evolution of pathol-
ogy as an international discipline requires scholarly platforms
that can sustain scientific exchange across regions with distinct
clinical environments, disease patterns, and research priorities.
JPTM is well-positioned to serve as such a platform, as evi-
denced by its growing international authorship representing
Asia, Europe, the Americas, Africa, and Oceania.

Looking ahead, the journal seeks to deepen its contribution

to cross-regional dialogue through initiatives such as thematic

https://doi.org/10.4132/jptm.2025.12.08
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Table 1. Editors-in-Chief of the Journal of Pathology and Translational Medicine

Year of service

Editor-in-Chief

Affiliation

Associate Editor

Affiliation

1967 to 1970
1970 to 1971
1971 to 1972
1972 to 1973
1973 to 1976
1976 to 1977
1978 to 1978
1978 to 1979
1979 to 1980
1980 to 1981
1981 to 1984
1984 to 1986
1986 to 1990
1991 to 1992
1993 to 1994
1995 to 1996
1997 to 1998
1999 to 2000
2001 to 2002
2003 to 2004

2005 to 2006
2007 to 2008

2009 to 2012

2013 to 2014

2015 to 2016

2017 to 2018

Sang In Kim

Soo Young Lee
Yoo Bock Lee
Sang Kook Lee
Yong Il Kim

Eui Keun Ham
Jung Dal Lee

Han Ik Cho

In Jun Choi

Jung Dal Lee
InJun Choi

Jung Dal Lee
Yong Il Kim
Chanil Park

Song Kye Yong
Nam Hee Won
Moon Hyang Park
Geung Hwan Ahn
Yeon-Lim Suh
Jae Yoon Ro

Eunsil Yu
Jeong-Wook Seo

Kyung-Ja Cho
So-Young Jin
Soon Won Hong
Kyung-Ja Cho
Soon Won Hong
Chong Jai Kim
Soon Won Hong
Chong Jai Kim

2019 to present Chan Kwon Jung

So Yeon Park

Seoul National University

The Catholic University of Korea

Yonsei University

Seoul National University
Seoul National University
Seoul National University
Korea Hospital

Seoul National University
Yonsei University

Kyung Hee University
Yonsei University
Hanyang University

Seoul National University
Yonsei University
Chung-Ang University
Korea University

Hanyang University
Sungkyunkwan University
Sungkyunkwan University
University of Ulsan

University of Ulsan
Seoul National University

University of Ulsan
Soonchunhyang University
Yonsei University
University of Ulsan

Yonsei University
University of Ulsan

Yonsei University
University of Ulsan

The Catholic University of Korea

Seoul National University

Han Kyeom Kim
Eun Kyung Hong
Cheol Keun Park
Sangyong Song
Eunsil Yu
Jung-Sun Kim
Kyung-Ja Cho
Kyung-Ja Cho
Chan-Sik Park
Jin-Haeng Chung
Jee Young Han
Jin-Haeng Chung
Jee Young Han
Yoon Jung Choi
Jee Young Han
Chan Kwon Jung
So Yeon Park
Eunah Shin
Haeryoung Kim
Andrey Bychkov”
Hee Eun Lee”

Korea University

Hanyang University
Sungkyunkwan University
Sungkyunkwan University
University of Ulsan
Sungkyunkwan University
University of Ulsan
University of Ulsan
University of Ulsan

Seoul National University
Inha University

Seoul National University
Inha University

National Health Insurance Service llsan Hospital

Inha University

The Catholic University of Korea

Seoul National University
Yonsei University

Seoul National University
Kameda Medical Center
Mayo Clinic

The journal was published under the title The Korean Journal of Pathology from its founding in 1967 until 2014; it was renamed the Journal of Pathol-

ogy and Translational Medicine in 2015, under which title it continues to the present.
Andrey Bychkov has served as Associate Editor since 2022, and Hee Eun Lee since 2023.

special issues developed in collaboration with global experts,
invited reviews that synthesize emerging ideas from diverse
geographic settings, and editorial partnerships that connect
researchers working on complementary scientific challenges
across continents. The planned expansion of the editorial board
to include a broader range of international scholars will further
reinforce these efforts.

JPTM aims to cultivate an environment in which scientific

perspectives from globally diverse contexts are equitably rep-

https://doi.org/10.4132/jptm.2025.12.08

resented. Such inclusivity enriches the global understanding of
disease, particularly in pathology, where variations in epide-
miology, genetics, and environment underscore the need for

knowledge drawn from multiple regions.

CURRENT POSITION AND
STRENGTHS OF JPTM

Today, JPTM occupies a position of growing international
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prominence. Submissions come from across Asia, Europe, and
the Americas, reflecting a readership and contributor base that
extends well beyond the journal’s national origins. Its multidis-
ciplinary scope encompasses surgical pathology, cytopathology,
molecular pathology, digital pathology, tumor biology, trans-
lational oncology, and the full spectrum of organ-based diag-
nostic specialties. Editorial processes have been strengthened
through careful oversight, ethical rigor, and consistent applica-
tion of peer-review standards. Coupled with an uninterrupted
publication record and rising citation metrics, these develop-
ments demonstrate that JPTM has matured into a stable, credi-

ble, and internationally relevant journal.

LOOKING AHEAD: PRIORITIES FOR
THE NEXT DECADE

As pathology continues to evolve toward deeper integration
with molecular medicine, spatial and single-cell technologies,
advanced imaging, and computational science, JPTM must
remain responsive to this changing landscape. Future priorities
include strengthening the journal’s focus on studies that bridge
diagnostic pathology with translational and mechanistic re-
search, expanding the publication of clinically impactful inves-
tigations, enhancing editorial transparency and adherence to
global ethical standards, and supporting early-career investiga-
tors through an accessible and equitable publication model. In-
ternational participation should continue to grow through col-
laborative initiatives and themed issues that highlight emerging
areas of scientific importance. A long-term aspiration remains
the journal’s eventual re-indexing in SCIE, achieved through
continuous improvements in scientific quality, editorial gover-

nance, and international engagement.

UPHOLDING EDITORIAL INTEGRITY
IN THE ERA OF ARTIFICIAL INTELLI-
GENCE

As artificial intelligence (AI) becomes more deeply integrated
into scientific research and clinical practice, the scholarly pub-
lishing ecosystem faces new ethical and procedural challenges.
Al-assisted writing tools, algorithmic data analysis, automated
figure generation, and large language models offer powerful ca-
pabilities but also pose risks related to authorship responsibility,
data authenticity, image manipulation, plagiarism, and the ero-

sion of scientific accountability.

Reflections and future directions in JPTM

Recognizing these challenges, JPTM has strengthened its
editorial policies to ensure the responsible, transparent, and
ethically governed use of Al in scientific publishing. Al tools
cannot be listed as authors, as they cannot assume responsibili-
ty for the integrity of published work. Any use of generative Al
or algorithmic assistance in writing, image processing, or data
analysis must be clearly disclosed in the manuscript, includ-
ing the tool used, the purpose for its use, and the extent of its
contribution. Undisclosed Al-generated content constitutes a
breach of publication ethics.

As Al continues to advance, JPTM will maintain a flexible,
adaptive policy framework, regularly update author guidelines,
provide ongoing training for editors and reviewers, and align
with global standards such as Committee on Publication Eth-
ics, International Committee of Medical Journal Editors, and
Council of Science Editors. By proactively addressing Al-relat-
ed ethical issues, JPTM seeks to uphold the highest standards
of trust, rigor, and accountability while embracing innovations

that enhance the publication process.

CONCLUSION

Sixty volumes of continuous publication reflect a remarkable
legacy of dedication by authors, reviewers, editors, and the ac-
ademic societies that have supported JPTM since its inception.
The journals evolution, from a nationally focused publication
to a platform of growing international stature, illustrates how
scholarly publishing must adapt to new technological, scientific,
and ethical realities while upholding enduring commitments to
quality, accessibility, and integrity. As JPTM moves into its next
decade, it remains committed to advancing the science and
practice of pathology, fostering global dialogue, and providing
a fair and rigorous venue for the dissemination of research in
pathology and translational medicine. The achievements of the
past sixty volumes form a shared foundation, and the promise
of the future rests on our collective commitment to sustaining
and elevating the journal’s contributions to the worldwide pa-

thology community.
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A comprehensive review of ossifying fibromyxoid tumor:
insights into its clinical, pathological, and molecular

landscape

Kyriakos Chatzopoulos', Antonia Syrnioti', Mohamed Yakoub’, Konstantinos Linos”

'Department of Pathology, Aristotle University of Thessaloniki, Thessaloniki, Greece

’Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA

Ossifying fibromyxoid tumor (OFMT) is a rare mesenchymal neoplasm first described in 1989. It typically arises in the superficial soft tissues of
the extremities as a slow-growing, painless mass. Histologically, it is commonly characterized by a multilobular architecture composed of uni-
form epithelioid cells embedded in a fibromyxoid matrix, often surrounded by a rim of metaplastic bone. While classic cases are readily identifi-
able, the tumor's histopathological heterogeneity can mimic a range of benign and malignant neoplasms, posing significant diagnostic chal-
lenges. Molecularly, most OFMTs harbor PHFT rearrangements, commonly involving fusion partners such as EP400, MEAF6, or TFE3. This review
underscores the importance of an integrated diagnostic approach—incorporating histopathological, immunohistochemical, and molecular data-
to accurately classify OFMT and distinguish it from its mimics. Expanding awareness of its morphologic and molecular spectrum is essential for
precise diagnosis, optimal patient management, and a deeper understanding of this enigmatic neoplasm.

Keywords: Ossifying fibromyxoid tumor; PHF1; Soft tissue neoplasms; Molecular pathology

INTRODUCTION

Ossifying fibromyxoid tumor (OFMT) is a rare soft tissue neo-
plasm of uncertain histogenesis, typically arising in the soft tis-
sues of the extremities and often in the subcutaneous tissue [1].
First described by Enzinger et al. in 1989 [2], OFMT displays a
wide spectrum of morphological findings and biological behav-
ior. While typical histopathological presentations usually pose
little diagnostic challenge, the tumor’s morphological variability
can complicate diagnosis. This includes cases exhibiting chon-
droid or lipoblastic differentiation [3], clear cell morphology
or collagen entrapment [4], which may mimic other soft tissue
neoplasms. Furthermore, hypercellular and mitotically active
tumors with significant cellular atypia can demonstrate met-
astatic potential [5], underscoring the importance of accurate
and timely diagnosis. The majority of OFMTs have recurrent

molecular alterations, most frequently PHFI rearrangements
[6], and molecular pathology can serve as a valuable adjunct in
diagnosing challenging cases [4]. This review aims to provide a
comprehensive overview of the clinical, pathological, and mo-
lecular characteristics of OFMT, educating the readers on this

enigmatic entity.

EPIDEMIOLOGY AND CLINICAL PRE-
SENTATION

Despite the rarity of OFMT, multiple case series have described
its clinical and pathologic findings in thorough detail. In most
cases, OFMT presents as a long-existing, slow-growing, painless
mass, with a median duration of ~4 years before patients seek
medical attention and treatment [7]. In the original case series
of 59 patients published by Enzinger et al. in 1989 [2], OFMT
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was diagnosed more frequently in males than females, with age
range spanning from 14 to 79 years. In the series of 70 patients
published by Folpe and Weiss [5], OFMT was primarily ob-
served in middle-aged adults, with a slight male predominance,
and a propensity to arise in the soft tissues of the extremities.
These findings were corroborated by a subsequent study of
104 patients from the Armed Forces Institute of Pathology,
which highlighted a median age of 50 years at diagnosis, along
with a male-to-female-ratio of 1.5:1 [7], as well as the study by
Graham et al on 46 patients with a median age of 52 years and
male-to-female ratio of 1.7:1 [8]. Apart from the extremities,
OFMT frequently arises in various locations of the head and
neck region [9-18]. Intracranial involvement [19,20], occasion-
ally with transcranial extension [21], as well as paraspinal [22]
or spinal extradural involvement [23] have been described.
Other unusual locations include the retroperitoneum [24], the
breast [25], and the genitourinary (GU) tract [26]. Pediatric
cases, although uncommon, have been reported [27,28], in-

cluding a 3-week-old male neonate with a left nasal mass [29].

MACROSCOPIC FINDINGS

OFMT typically presents as a well-circumscribed, ovoid, small
soft tissue mass, with a rubbery to firm texture, and a glisten-
ing, white cut surface. It often features a peripheral hard shell,
which can be appreciated on imaging as irregular bone [7,8,30].
Most tumors are small to medium-sized, with a median size of
3-5 cm, although large tumors measuring up to 17 cm or even
21 cm have been reported [5,7,8]. In the appropriate clinico-ra-
diological setting, this finding can occasionally complicate the
differential diagnosis with parosteal osteosarcoma [31]. The
tumors are most often subcutaneous, although rarely, they may
arise within the skeletal muscle, particularly in the head and

neck area [7].

MICROSCOPIC FINDINGS

Microscopically, OFMT exhibits a multilobular architecture,
with a pressure effect on the superficial component of the over-
lying skin, occasionally associated with cutaneous ulceration
[7]. The tumor is lined by a pseudocapsule with metaplastic
lamellar or woven bone, sometimes interspersed with adipo-
cytes between bony trabeculae, but lacking hematopoietic cells.
However, it's worth noting that the absence of the peripheral
bone shell is reported in ~25%-40% of OFMT [8,32]. Addition-
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ally, osteoid material is commonly observed in central regions
of the tumor [33], which raises the possibility of osteosarcoma
in the differential diagnosis [34]. Pericapsular aggregates of
lymphocytes are not uncommon [5,35]. Within a collagenous
or myxoid matrix with perivascular hyalinization, the tumor
cells are uniform and epithelioid, featuring pale to eosinophilic
cytoplasm, round nuclei with even chromatin distribution, deli-
cate nucleoli, inconspicuous clefts or pseudoinclusions, and low
mitotic activity [5,7,35] (Fig. 1).

Unusual findings described in OFMT include breakdown of
lamellar bone with osteoclasts, central hemorrhagic infarction
[7], satellite microscopic nodules, mucinous microscopic cysts,
microcalcification, crushing artifact, and paucity or absence of
myxoid matrix, as well as chondroid differentiation (Fig. 2) with
atypical binucleated cells [36]. Additional unusual findings are
predominance of clear cell morphology, extravasated red blood
cells, collagen entrapment and interdigitating fibrocollagenous
and fibromyxoid stromal bundles [4] (Figs. 3, 4). A recent study
also described two OFMTs with prominent lipoblastic differen-
tiation [3].

An OFMT characterized by high nuclear grade or increased
cellularity, and mitotic activity exceeding 2 mitoses per 50 high
power fields can be classified as malignant [5] (Figs. 5-8). Ad-
ditionally, necrosis and an infiltrative pattern may be present [8].
Patients with malignant OFMT are more likely to develop dis-
tant metastases, most often to the lungs [37]. Although overtly
sarcomatous changes in OFMT are uncommon, they have been
documented [38], with reported cases including osteosarcoma

arising from OFMT after multiple recurrences [39].

HISTOGENESIS

The histogenesis of OFMT remains enigmatic. Initially it
was thought to be a neoplasm of Schwannian origin [40] with
possible incomplete neural or cartilaginous differentiation, a
hypothesis supported by the commonly observed S100 protein
immunoreactivity [7]. However, electron microscopy find-
ings largely resemble those seen in pleomorphic adenomas or
myoepithelial tumors [41], including paucity of organelles and
aggregates of intermediate filaments with reduplicated basal
lamina material [41-43]. Therefore, myoepithelial origin or
differentiation is a plausible hypothesis, supported by case re-
ports of tumors displaying intermediate characteristics between
OFMT and myoepithelial neoplasms, as discussed below.
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Fig. 1. A right inferior breast ossifying fibromyxoid tumor displaying nearly classic histologic features (except the peripheral metaplastic
bone). This case harbors the classic EP400::PHF1 fusion. (A) At low magpnification, the tumor appears as a well-demarcated, multilobulated
mass located within the subcutis. (B, C) Tumor cells are arranged in cords and sheets within collagenous stroma. (D) High power view de-

picting ovoid tumor cells, featuring pale to eosinophilic cytoplasm, and round, regular nuclei.

CYTOPATHOLOGY

The diagnosis of OFMT on cytology specimens is very
challenging, both because of its rarity and the non-specific
cytomorphology of the cellular component [44]. However, the
presence of a fine fibrillary [45] or myxoid matrix [46], with
occasional rosette-like structures [44,45] and particularly os-
teoid-like material [47] can guide cytopathologists to include
OFMT in the differential diagnosis of a soft tissue mass. In ad-
dition, the presence of nuclear atypia, including features such as
prominent nucleoli, chromatin clumping and irregular nuclear
contours, may raise the possibility of malignant OFMT [46].

IMMUNOHISTOCHEMISTRY

OFMT typically expresses S100 protein [7,8] and is frequent-
ly positive for excitatory amino acid transporter 4 (EAAT4)
[8,38], desmin, neurofilament, CD56 [8], CD10 [7], and insuli-
noma-associated protein 1 (INSM1) [48]. OFMT often displays
mosaic expression of integrase interactor 1 (INI1), due to a
commonly present underlying alteration of the SMARCBI gene,
as mentioned in detail below [8,38,49]. Transcription factor E3
(TFE3) nuclear expression is typically seen in OFMT harboring
a PHFI::TFE3 fusion [50,51].

Expression of keratins, collagen IV, glial fibrillary acidic
protein (GFAP), epithelial membrane antigen (EMA), smooth
muscle actin (SMA) [7], CD99 [52], MUC4 (not diffuse) [8] or

https://doi.org/10.4132/jptm.2025.10.02
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Fig. 2. A lower back ossifying fibromyxoid tumor, harboring a CREBBP::BCORL1 fusion. (A) Low-power view depicting a well-delineated,
pseudoencapsulated tumor, featuring prominent central stromal hyalinization. (B, C) Extensive chondroid differentiation and focal clear cell
morphology are appreciated. (D) Tumor cells exhibit positivity for S100 on immunohistochemical staining.

Fig. 3. A left axillary ossifying fibromyxoid tumor harboring an EP400::PHF1 fusion. (A) At low magnification, the tumor is well-defined and
distinctly bordered by adjacent adipose tissue. (B) Tumor cells are set within a stromal matrix that transitions between fibrocollagenous and
fioromyxoid areas in a geographically interwoven pattern. (C, D) Cords and sheets of spindle-to-ovoid tumor cells with uniform, ovoid nu-
clei and pale to eosinophilic cytoplasm are noted.

https://doi.org/10.4132/jptm.2025.10.02 9
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Fig. 4. The EP400::PHF1 fusion, detected in the case depicted in Fig. 3, preserves SNF2_N from EP400 and fuses to PHFT exon 2 and the
PHD domain, altering chromatin regulation via recruitment to new loci [53]. HAS, actin-binding domain in chromatin remodelers; SNF2_
N, ATP-binding subdomain of SNF2 helicase; Helicase_C, catalytic helicase subdomain; PHD, zinc finger “reader” domain binding histone
marks; PRC2 interaction, region mediating interaction with the PRC2 complex (lllustrations are created by Biorender https://app.biorender.
com).
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Fig. 5. A malignant, right-back ossifying fibromyxoid tumor harboring an EPC1::SUZ12 fusion. (A) At low magnification, the tumor appears
multilobulated and highly cellular. (B, C) Sheets and trabeculae of tumor cells are seen infiltrating the collagen bundles. (D) Areas of in-
creased mitotic activity are observed, with no evidence of pleomorphism or necrosis.
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Fig. 6. EPCT::SUZ12 fusion, detected in the case depicted in Fig. 5, joins the EPcB domain of EPCT to SUZ12 5'-UTR, reprogramming PRC2
recruitment and function with loss of H3K27 trimethylation [54]. EPcA/EPcB domains, EPC1 domains that scaffold chromatin modifiers;
ZnB, Zinc-binding domain (complex assembly function); VEFS, Domain that interacts with EZH2/EED and targets H3K27 (lllustrations are
created by Biorender https://app.biorender.com).

Fig. 7. A malignant right parapharyngeal ossifying fibromyxoid tumor with the very rare PHF1::FOXR2 fusion. (A, B) At low magpnification,
the tumor appears highly cellular, with metaplastic bone present within the fibrous septae. (C) Tumor cells form cords, nests, and sheets,
scattered throughout a collagenous to hyalinized background. (D) The tumor cells are predominantly ovoid to spindle-shaped, with a high
nucleus-to-cytoplasm ratio, round to ovoid nuclei featuring occasional small nucleoli, and increased mitotic activity. The patient subse-
quently developed lung metastases.
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Fig. 8. The PHF1::FOXR2 fusion, detected in the case depicted in Fig. 7, combines PRC2 recruitment ability (PHF7) with the transcriptional
targeting domain of FOXR2, redirecting epigenetic silencing to FOX-bound genomic loci and mislocalization of chromatin-modifying com-
plexes [55]. PHD, histone reader domain; FOX (Forkhead domain), DNA-binding domain of FOXR2, found in FOX transcription factors (lllus-

trations are created by Biorender https://app.biorender.com).

calponin [56] has occasionally been reported, while OFMT is
consistently negative for HMB45, CD34 [7], SOX10 [33], and
preferentially expressed antigen in melanoma (PRAME) [57].
Interestingly, estrogen receptor and progesterone receptor (PR)
expression has been described in a PHFI-rearranged OFMT of
the breast, which also co-expressed STAT6 [25], as well as in a
PHF]-rearranged OFMT of the axillary soft tissues [4], while
isolated diffuse PR expression was seen in two OFMTs of the
extremities with BCOR and TFE3 rearrangements [51].

Of note, expression of pan-tropomyosin receptor kinase
(pan-TRK) by immunohistochemistry has been reported in
BCOR-rearranged OFMT [58,59]. Given the efficacy of target-
ed neurotrophic tyrosine receptor kinase (NTRK) inhibition
for patients with NTRK-fused tumors [60], this finding is of
potential clinical interest. Although the exact mechanism of
pan-TRK expression has not been fully elucidated, it seems that
it occurs due to underlying NTRK3 mRNA overexpression [58].

Finally, it is worth mentioning that malignant OFMT can
show an atypical immunophenotype, with attenuation or
complete absence of S100 protein expression [61]. Absence of
S100 expression was also demonstrated in all four GU OFMTs
described by Argani et al. [26], two of which were classified as

malignant based on mitotic count.

12

MOLECULAR GENETICS

The presence of clonal chromosomal alterations such as aneu-
somies, unbalanced translocations [62] and complex karyotypes
[63], including marker chromosomes [64], was highlighted in
early studies. Complex karyotypes have been particularly asso-
ciated with malignant OFMT cases exhibiting metastases [63].
A relatively recurrent finding is hemizygous deletion of chro-
mosome 22 or 22q, leading to hemizygous loss of SMARCBI, an
alteration corresponding to the mosaic immunohistochemical
pattern of INI1 expression frequently observed, as mentioned
above [8]. Another recurrent finding most often seen in atyp-
ical and malignant OFMT is loss of the RBI tumor suppressor
gene, observed in almost a third of cases [55].

The molecular hallmark of OFMT is the presence of recur-
rent rearrangements of PHFI, which are seen in approximately
80%-85% of tumors [6]. The PHFI gene encodes a protein
which interacts with polycomb-repressive complex 2 (PRC2),
an important regulator of chromatin structure and develop-
mental gene expression [65], ultimately controlling histone
H3K27 methylation status [66]. Rearrangement of PHF]I typi-
cally occurs in the form of a reciprocal translocation, resulting
in gene fusion, with EP400 being the most common fusion
partner (Fig. 4) [67]. Other PHFI fusion partners include
EPCI, MEAF6 [68], TFE3 [69], FOXR1, FOXR2 (Fig. 8) [70],
CREBZF [34], TP53 [71], and JAZFI [3].

https://doi.org/10.4132/jptm.2025.10.02
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Non-PHF] fusions have also been described, including
MEAF6::SUZ12 [72], EPC1::SUZ12 (Fig. 6) [4], CREBBP::B-
CORLI, KDM2A::WWTRI1 [73], ZC3H7B::BCOR [59], CSM-
DI1:MEAF6 [55], and EPCI::PHCI [3]. The common denom-
inator of these fusions is that they function as tumor drivers,
inducing significant epigenetic changes via histone modifi-
cation, a process currently regarded as the major molecular
mechanism of OFMT pathogenesis [55]. Of note, a non-fused
malignant OFMT with a BCOR internal tandem duplication
has been reported in a pediatric patient with a lateral neck mass
and subsequent local and metastatic recurrences [74].

Interestingly, certain of the above mentioned fusions, partic-
ularly JAZF1::PHF1, EPC1::PHF1, MEAF6::PHF1, ZC3H7::B-
COR, and EPC1::SUZ12 [75,76] have been previously described
in low-grade endometrial stromal sarcoma (ESS), a finding
explaining why certain OFMT may cluster with ESSs by DNA
methylation analysis [4]. The latter fact may limit the utility of
DNA methylation assay in the work-up of OFMT.

Given the frequency of PHFI rearrangements, a reasonable
approach includes morphological assessment with confirma-
tion of PHFI alteration by break-apart fluorescent in situ hy-
bridization (FISH) [77]. However, in cases with unusual mor-
phological findings and non-PHFI rearrangements, the final
diagnosis may need to be deferred until molecular testing by

next generation sequencing (NGS) is performed [4].

DIFFERENTIAL DIAGNOSIS

The broad spectrum of the differential diagnosis for OFMT of-
ten encompasses myoepithelial neoplasms [78]. In challenging
cases, testing for EWSRI rearrangements in these neoplasms
can provide valuable insights. However, it's essential to ac-
knowledge that EWSRI rearrangements are detected in only
around 50% of soft tissue myoepithelial neoplasms [79], mak-
ing the test informative when positive, but less conclusive when
negative.

The most frequent pitfall in the differential diagnosis of
OFMT is low-grade fibromyxoid sarcoma (LGEMS) [80]. Also
known as “Evans tumor” [81], LGFMS is a low-grade sarcoma
arising in the extremities of young adults, although as many
as 20% of cases occur in patients younger than 18 years old. It
consists of spindle to epithelioid cells arranged in alternating
hyalinized and myxoid areas, with occasional hyaline rosettes
[82]. These morphologic features, along with lack of S100 ex-
pression and strong and diffuse MUC4 positivity, usually suf-
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fice for distinguishing LGFMS from OFMT. Molecular detec-
tion of the characteristic FUS::CREB3L2 or EWSRI::CREB3LI
fusions confirms the diagnosis of LGFMS in the appropriate
morphologic context [83].

Sclerosing epithelioid fibrosarcoma (SEF) or hybrid SEF-LG-
FMS tumors are also frequently included in the differential di-
agnosis. SEF is a rare aggressive variant of fibrosarcoma, char-
acterized by small epithelioid cells arranged in cords and nests
within a densely sclerotic stroma [84]. However, unlike OFMT,
SEF primarily arises in deep soft tissues and lacks S100 expres-
sion [85]. The diagnosis of SEF can be confirmed through mo-
lecular studies that identify the characteristic EWSRI:CREB3LI
fusion [86].

The differential diagnosis also includes the newly described
YAPI::KMTA2-rearranged sarcoma, an aggressive soft tissue
malignancy, notorious for its propensity to mimic benign or
low-grade neoplasms, such as schwannoma, fibromatosis or
LGFMS [87]. Initially thought to represent a MUC4-nega-
tive subtype of SEFE the identification of recurrent YAPI and
KMT2A rearrangements [88,89], along with distinctive mor-
phologic features [89] and a unique DNA methylation profile
[87], has established YAPI:KMT2A rearranged sarcoma as a
novel entity. These tumors usually exhibit an infiltrative growth
pattern with areas of variable cellularity, where monomorphic
epithelioid or bland, fibroma-like spindle cells are embedded
in a densely collagenous matrix. Mitotic activity is generally
low and high-grade features, such as necrosis are usually absent
[89]. Immunohistochemically, these tumors are consistently
negative for MUC4 and usually negative for S100 protein, but
may show variable EMA or CD34 expression [86]. Despite its
deceptively low-grade histomorphology, YAP1::KMT2A-rear-
ranged sarcoma can follow an aggressive clinical course, with
local recurrence and metastatic disease developing in up to 50%
of patients [86].

Other entities to consider in the differential diagnosis include
schwannoma [90], malignant peripheral nerve sheath tumor
(MPNST) [78], extraskeletal myxoid chondrosarcoma (EMC)
[48], and extraskeletal osteosarcoma [78]. Schwannoma aris-
es from the peripheral nerve sheath and is characteristically
strongly and diffusely positive for S100 protein, in contrast to
OFMT, where S100 expression may be weak or absent. Schwan-
nomas also lack the peripheral ossification and cytomorpho-
logic features typical of OFMT [90]. MPNST typically arises in
deep soft tissues, often in association with major nerves, and

does not exhibit peripheral ossification. While MPNST may
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show attenuated S100 positivity, it can also express other neural
markers such as neurofilament and GFAP [78]. Importantly,
loss of H3K27me3 expression—frequently seen in MPNST—
can help distinguish it from OFMT, in which H3K27me3 ex-
pression is consistently retained [91,92]. EMC is characterized
by a lobular architecture with fibrous septa and uniform tumor
cells showing eosinophilic cytoplasm, occasional spindling,
and inconspicuous nucleoli in a myxoid background. EMC
typically expresses INSM1, synaptophysin, and sometimes oth-
er neuroendocrine or neural markers such as chromogranin,
PGP9.5, microtubule-associated protein 2, class III B-tubulin,
and peripherin [48]. Genetically, EMC is defined by NR4A3 re-
arrangements, most commonly with EWSRI, but also involving
partners such as TAF15, TCF12, TFG, FUS, HSPA8, LSM14A,
or SMARCA?2 [48]. Extraskeletal osteosarcoma is exceedingly
rare in the skin or subcutis and typically represents metastatic
disease, making clinical history essential. Helpful distinguish-
ing features include lack of S100 expression and the presence of
marked nuclear atypia [78].

Notably, primary bone OFMT has also been described, which
may be extremely challenging to distinguish from osteosarcoma
[93]. In tumors with lipoblastic differentiation, distinction from
benign and malignant lipomatous tumors such as chondroid
lipoma or myxoid liposarcoma can be challenging [3]. The
differential diagnosis can be particularly challenging in tumors
with uncommon microscopic features, where the final diagno-
sis can be confidently rendered only by confirming a character-

istic molecular alteration [4].

PRACTICAL DIAGNOSTIC APPROACH

Diagnosing OFMT requires an integrative approach, as the
tumor's morphologic and immunophenotypic spectrum is
broad and overlaps with several benign and malignant enti-
ties. In classic presentations—characterized by uniform ovoid
cells embedded in a fibromyxoid matrix and surrounded by
a peripheral shell of metaplastic bone—the diagnosis may be
straightforward, particularly when supported by strong S100
protein and desmin expression. However, in atypical or ma-
lignant variants, these features may be attenuated or absent.
For instance, malignant OFMTs frequently lack ossification,
exhibit increased cellularity and mitotic activity, and may show
reduced or completely lost S100 expression. Ancillary studies
are essential in such cases. FISH is widely used and can detect

gene rearrangements or amplifications in formalin-fixed paraf-
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fin-embedded tissue with good sensitivity, but it is restricted to
one locus per assay and, in the case of break-apart probes, can-
not identify the fusion partner. Furthermore, cryptic or com-
plex rearrangements may go undetected. Reverse-transcriptase
polymerase chain reaction (RT-PCR) offers high sensitivity and
relatively low cost for detecting known fusion transcripts, but it
requires prior knowledge of the partner genes and thus cannot
identify novel fusions. Targeted RNA sequencing and broader
NGS panels overcome these limitations by interrogating mul-
tiple loci simultaneously, allowing both confirmation of estab-
lished fusions and discovery of novel ones. Although more re-
source-intensive, NGS has emerged as the most reliable method
for characterizing OFMT at the molecular level, particularly in
diagnostically challenging cases [94].

In clinical practice, the diagnostic work-up of a suspected
OFMT typically begins with a panel of broad immunohisto-
chemical stains, including $100, SOX10, desmin, SMA, and a
broad-spectrum cytokeratin. In tumors with classic morpholo-
gy, the combination of S100 and desmin positivity is generally
sufficient to establish a confident diagnosis. In cases with very
suggestive morphology but incomplete immunophenotypic
support—for example, when S100 or desmin expression is weak
or focal —PHF1 break-apart FISH is the logical next step, as ap-
proximately 80%-85% of OFMTs harbor PHFI rearrangements.
If PHFI testing is negative but the pretest probability remains
high, RT-PCR, targeted RNA sequencing or broad-panel NGS
can help identify rarer fusions, such as CREBBP::BCORL1, EP-
C1:8UZ12, or ZC3H7B::BCOR amongst others.

In atypical or malignant cases, where classic immunohisto-
chemical markers such as S100 and desmin are diminished or
absent, a diagnosis of OFMT may still be appropriate if the tu-
mor contains areas reminiscent of conventional OFMT. In such
instances, PHFI FISH remains useful. However, in malignant
tumors that lack both morphologic and immunophenotypic
features suggestive of OFMT, comprehensive molecular testing
via NGS is often the only practical means of confirming the di-
agnosis.

Emerging evidence supports a correlation between specific
gene fusions and atypical or malignant histologic features of
OFMT. In a synthesis of reported cases across the literature,
approximately 26 OFMTs with non-PHF]I fusions or PHFI
fusions involving uncommon partners (e.g., TP53, FOXR1/2,
CREBZF, ZC3H7B, EPCI) have been compiled and analyzed.
Of these, 18 tumors (69%) were classified as atypical or malig-

nant, indicating a strong association between rare fusion events
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and aggressive histologic behavior. Moreover, certain fusion
types—such as TP53::PHF1, PHF1::FOXR2, ZC3H7B::BCOR,
and EPCI::SUZ12—have been reported almost exclusively in
malignant cases, further supporting their potential as molec-
ular indicators of high-grade disease. While these rare fusions
do not inherently define malignancy, their frequent occurrence
in morphologically aggressive tumors suggests they may play
a role in driving dedifferentiation or loss of canonical OFMT
features.

These atypical/malignant variants also tend to show marked
loss of conventional immunophenotypic markers. In the pooled
dataset, S100 expression was retained in only four of 15 cases
(27%), often in a focal or patchy distribution, and desmin was
expressed in just two of 14 cases (14%). In contrast, classic
OFMTs show S100 positivity in ~70% and desmin in ~50% of
cases. Additionally, the characteristic peripheral ossified shell
was frequently absent in these high-grade tumors, further com-
plicating diagnosis.

Together, these findings highlight the importance of recog-
nizing non-classic morphologic and immunohistochemical
presentations and maintaining a low threshold for molecular
testing—especially in tumors lacking both classic architecture
and marker expression [71].

TREATMENT AND PROGNOSIS

OFMT is treated surgically with local marginal or wide exci-
sion and rarely amputation, particularly when a large tumor
arises on a digit [7]. Local recurrence is more likely to occur in
patients whose tumors show increased mitotic activity [7]. Tu-
mors fulfilling the microscopic criteria of malignancy, should
be regarded as sarcomas for treatment purposes, as they tend
to display more aggressive clinical behavior, including the
potential for distant metastasis [5,95]. These patients may be
candidates for adjuvant radiation therapy, particularly after be-
ing diagnosed with local recurrence [5]. Similarly, patients with
metastatic disease may be eligible for chemotherapy [96]. When
malignant OFMT metastasizes, it typically spreads to the lung
[8,37,96], although unusual locations such as the thyroid gland
have been reported [97].

CONCLUSION

OFMT is a rare mesenchymal neoplasm that can occasionally

complicate the differential diagnosis of a soft tissue mass, lead-
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ing to diagnostic uncertainty. Given that certain tumors behave
in a clinically aggressive manner, pathologists should consider
OFMT in the differential diagnosis of an unusual soft tissue tu-
mor and triage cases for molecular testing where appropriate, as
rendering an accurate diagnosis is the cornerstone of effective

patient management.
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Solitary fibrous tumor: an updated review

Joon Hyuk Choi

Department of Pathology, Yeungnam University College of Medicine, Daegu, Korea

Solitary fibrous tumor (SFT) is a fibroblastic neoplasm characterized by a branching, thin-walled dilated staghorn-shaped (hemangiopericyto-
ma-like) vasculature and a NAB2::STAT6 gene fusion. SFTs can occur in almost any anatomical location, including superficial and deep soft tis-
sues, visceral organs, and bone. They most commonly occur in extrapleural locations, equally affect both sexes, and are typically present in
adults. Although metastasis is rare, SFTs frequently show local recurrence. The diagnosis of SFTs is difficult because of their broad histological
and morphological overlap with other neoplasms. An accurate diagnosis is important for guiding disease management and prognosis. Despite
advances in molecular diagnostics and therapeutic strategies, the biological complexity and unpredictable clinical behavior of SFTs present sig-
nificant challenges. This review provides an updated overview of SFT, with a focus on its molecular genetics, histopathological features, and di-

agnostic considerations.

Keywords: Solitary fibrous tumors; Hemangiopericytoma; Diagnosis, differential; Neoplasms, fibrous tissue; Gene rearrangement

INTRODUCTION

Solitary fibrous tumor (SFT) is a rare fibroblastic neoplasm
defined by a distinctive network of thin-walled, branching
staghorn-shaped (hemangiopericytoma-like) vessels [1]. It may
occur in almost any anatomical location, such as superficial and
deep soft tissue, visceral organs, and bone, although it most of-
ten arises in extrapleural sites. SFT affects both sexes equally and
is typically diagnosed in adults.

Many tumors previously classified as hemangiopericytomas
are now recognized as SFTs and reflect fibroblastic rather than
true pericytic differentiation [2]. Histologically, SFTs exhibit a
wide morphological spectrum, usually consisting of spindle to
ovoid cells arranged haphazardly within a collagen-rich stroma
and associated with prominent staghorn-shaped vasculature [3].
However, its biological behavior is often unpredictable and can-
not be reliably inferred from morphology alone [4].

Recent advances in molecular pathology, particularly the
discovery of the NAB2:STAT6 gene fusion and its downstream
effects, have provided considerable insight into the biology, clas-

sification, and potential therapeutic targets of SFT [5-7]. None-
theless, diagnosis remains difficult because of marked histologi-
cal heterogeneity and overlap with other spindle cell neoplasms.

Most SFTs pursue an indolent course; however, a clinically
important subset shows aggressive behavior, including local re-
currence or distant metastasis. Therefore, accurate pathological
classification, integrated with molecular findings, is essential for
guiding management and prognostication.

In this review, the clinicopathological and molecular features
of SFT are summarized, including the histological subtypes, di-

agnostic approaches, and key differential diagnoses.

HISTORICAL ASPECTS

The term hemangiopericytoma was first introduced in the 1940s
by Stout and Murray [8] and Stout [9,10] to describe tumors
thought to originate from pericytes, which are specialized con-
tractile cells surrounding capillaries and venules; however, their
original definition lacked specificity and encompassed a hetero-
geneous group of neoplasms, including entities now classified as
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myofibromas. In 1976, Enzinger and Smith [11] refined the con-
cept, characterizing these tumors by their undifferentiated small
round-to-spindle cells and the presence of prominent, branching
staghorn-shaped vessels. Despite this refinement, its classifica-
tion remains problematic because of inconsistent ultrastructural
evidence of pericytic differentiation [12-15], infrequent actin
expression [16-19], and poor diagnostic reproducibility [20],
which has resulted in a gradual decline in the use of the term.

The entity known as SFT subsequently emerged. First de-
scribed by Klemperer and Rabin [21] as a pleural-based lesion
designated “fibrous mesothelioma” or “benign fibrous tumor of
the pleura,” it was more clearly defined by England in 1989 [22],
who proposed the term “localized fibrous tumor of the pleura”
By the late 1980s and early 1990s, histologically indistinguish-
able tumors were increasingly recognized at extrapleural sites,
which supported the concept of a broader, site-independent
lesion.

Extrapleural tumors with a hemangiopericytoma-like mor-
phology frequently express CD34, similar to SFTs, which sug-
gests a shared lineage. This was confirmed by the discovery of
the recurrent NAB2::STAT6 gene fusion and its correspond-
ing nuclear signal transducer and activator of transcription 6
(STATS6) expression in SFTs and tumors, which were previously
diagnosed as hemangiopericytomas, regardless of anatomical
site [23-26].

Based on this evidence, the 2002 WHO classification of
tumors of soft tissue and bone (3rd edition) [27] revised the
definition of hemangiopericytoma. It was recognized that most
remaining cases closely resemble the cell variant of SFT mor-
phologically and clinically. In 2013, the 4th edition of the WHO
classification [28] eliminated the term hemangiopericytoma,
reclassifying nearly all such tumors under the unified diagnosis
of SFT. Table 1 lists the conceptual changes in hemangiopericy-

toma classification.

EPIDEMIOLOGY

SFTs affect both sexes equally and predominantly occur in

Table 1. Conceptual changes in hemangiopericytoma classification

Choi JH

adults, with a peak incidence between 40 and 70 years of age
[29-31]. Although SFTs may arise anywhere in the body, ex-
trapleural locations are more common. Approximately 30%-
40% occur in the extremities, 30%-40% in the deep soft tissues
of the abdomen, pelvis, or retroperitoneum, 10%-15% in the
head and neck, and 10%-15% in the trunk [30,32].

In the gastrointestinal system, SFTs typically develop in adults
aged 20-70 years, but are rare in children and adolescents. The
liver, pancreas, mesentery, or serosal surfaces of the gastrointes-
tinal tract are considered common sites. A slight male predom-
inance was reported in the lipomatous (fat-forming) subtype
[33-35]. In the female genital tract, SFTs primarily affect women
aged 22-75 years, with a peak incidence during the fifth decade.
Common sites include the vulva, vagina, and cervix [36].

In the thorax, SFTs primarily occur from the visceral pleura
and typically present in the sixth decade. They may also arise
in the lung or pericardium, whereas mediastinal involvement is
rare. No sex predilection is evident [22,37]. In the central ner-
vous system (CNS), SFTs are extremely rare and account for less
than 1% of all CNS tumors. They often present in middle-aged
to older adults. Most are dural-based and are often located in the
supratentorial region, with occasional cases reported in the skull
base, spinal cord, or pineal region [38-40].

In the urinary and male genital tracts, SFTs generally occur in
adults between 20 and 70 years of age, with no clear sex predi-
lection. Reported locations include the kidney, bladder, prostate,
seminal vesicles, and penis [41,42]. In the endocrine system,
SFTs most commonly involve the thyroid gland or pituitary fos-
sa, whereas other endocrine organs are rare. These tumors typ-
ically occur between ages of 50 and 60, with no sex predilection
[43,44].

In the head and neck, a marked male predominance is ob-
served in the larynx (male-to-female ratio ~6:1), whereas tu-
mors arising in the orbit, nasal cavity, or paranasal sinuses occur
across a broad age range in both sexes [45,46]. Orbital SFTs are
most common in individuals in their mid-40s and are rare in
children. These tumors may occur in the intraconal and extraco-

nal compartments, with occasional involvement of the lacrimal

Tumor type

Updated concept

Line of differentiation

Adult hemangiopericytoma
Infantile hemangiopericytoma
Meningeal hemangiopericytoma
Sinonasal hemangiopericytoma

Reclassified as solitary fibrous tumor (cellular subtype)
Considered within the spectrum of infantile myofibromatosis
Reclassified as cellular/malignant solitary fibrous tumor
Reclassified as sinonasal glomangiopericytoma

Fibroblastic differentiation
Pericytic (perivascular myoid) differentiation
Fibroblastic differentiation
Pericytic (perivascular myoid) differentiation
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gland, conjunctiva, or eyelid [47-49].

CLINICAL FEATURES

The clinical presentation of SFTs varies by anatomical site, but
they most commonly manifest as a slow-growing, painless mass.
Abdominopelvic SFTs may cause symptoms, such as abdomi-
nal distention, constipation, urinary retention, or early satiety
[50,51], whereas head and neck lesions result in nasal obstruc-
tion, hoarseness, or epistaxis [52,53]. Orbital SFTs typically
present with periorbital fullness, proptosis, globe displacement,
and diplopia, whereas deeper lesions may compromise the optic
nerve [47,49,54].

Thoracic SFTs are often asymptomatic and incidentally de-
tected; however, larger tumors can result in cough, dyspnea, or
chest pain [55]. CNS SFTs generally present with mass effect
symptoms or increased intracranial pressure [56]. In the diges-
tive, urinary, and endocrine systems, tumors are usually painless
but may produce compressive symptoms depending on their
size and anatomical relationships [41,43,57].

A subset of large or aggressive SFTs secretes insulin-like
growth factor 2 (IGF2), which results in paraneoplastic hypo-
glycemia (Doege-Potter syndrome) and, rarely, acromegaloid
features [58,59].

RADIOLOGICAL FEATURES

Upon imaging, SFTs typically show nonspecific radiographic
features [60,61], whereas computed tomography (CT) usually
yields a well-defined, occasionally lobulated, isodense mass
relative to the skeletal muscle (Fig. 1). They exhibit heteroge-
neous contrast enhancement because of their rich vascularity
[62,63]. Magnetic resonance imaging (MRI) typically shows
intermediate T1 signal intensity and variable T2 signals, which
correspond to fibrous (low T2) and cellular or myxoid (high T2)
components [63-65]. Larger or more aggressive tumors may dis-
play heterogeneity because of fibrosis, necrosis, hemorrhage, or
cystic changes [63].

In the thorax, SFTs are usually present as sharply marginated,
pleural-based masses without chest wall invasion. Malignant
lesions may exhibit increased fluorodeoxyglucose uptake on
positron emission tomography; however, overlap with benign
tumors may occur [66,67]. In the CNS, SFTs often mimic
meningiomas on imaging. The lesions exhibit isointensity on

T1-weighted MRI, variable T2 signals, and peripheral dural en-
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hancement (dural tail); however, no specific CT or MRI features
reliably distinguish them from other dural-based tumors [68,69].

In the head and neck region, SFTs typically appear as well-cir-
cumscribed, contrast-enhanced masses by CT and MRI [70,71].
In the orbit, MRI typically exhibits iso-intense signals on
T1-weighted images, whereas CT demonstrates contrast enhance-

ment and is valuable for assessing bone involvement [47,72].

MOLECULAR CHARACTERISTICS

Most SFTs harbor a recurrent paracentric inversion on chromo-
some 12q13. This inversion results in the fusion of the NAB2
and STAT6 genes [26,73,74]. This fusion replaces the C-terminal
repression domain of NAB2 with the transcriptional activation
domain of STATS6, thereby converting NAB2 from a transcrip-
tional repressor into a constitutive activator of EGRI. Conse-
quently, EGRI drives the expression of downstream targets, such
as IGF2 and FGFRI, as well as other genes that promote growth
and survival [73].

Multiple NAB2::STAT6 gene fusion variants have been discov-
ered, with the length of the retained STAT6 portion correlating
with tumor morphology and clinical behavior. For example,
fusions involving NAB2 exon 4 and STAT6 exon 2 or 3 are as-
sociated with a reduced cellular and more indolent course. In
contrast, fusions involving NAB2 exons 6-7 and STAT6 exons

16-17 more commonly occur in cellular or clinically aggressive

Fig. 1. Radiological findings of solitary fibrous tumor. Axial con-
trast-enhanced abdominal computed tomography demonstrates a
large central abdominal mass. Prominent feeding vessels (arrow)
are visible along the anterior aspect of the lesion.
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variants [75,76].

No distinct molecular features have been identified that can
reliably distinguish benign from malignant SFTs; however, oth-
er genetic alterations linked to high-grade transformation or
aggressive behavior have been identified, including TERT pro-
moter mutations [55,77], TP53 mutations, and pl6 overexpres-
sion [78-81]. Moreover, IGF2, a key mediator of Doege-Potter
syndrome in SFT5, is a target gene of EGRI and may be dysreg-
ulated by the NAB2::STAT6 fusion, which may account for the
relatively high frequency of this paraneoplastic syndrome [26].

The NAB2::STAT6 gene fusion is definitively diagnostic; how-
ever, its detection by molecular methods is challenging because
of the close proximity of the genes on chromosome 12q and the
heterogeneity of the fusion breakpoints. Thus, STAT6 immuno-
histochemistry demonstrating strong, diffuse nuclear staining,
serves as a sensitive and specific surrogate marker for all fu-
sion variants and is widely used in routine diagnostic practice
[23,25,82].

HISTOPATHOLOGICAL FEATURES

Macroscopic features

SFTs are usually well-circumscribed, solid masses ranging in size
from 1 cm to greater than 25 cm, with most measuring between
5-10 cm in diameter [83,84]. The cut surface varies from firm
and white in more fibrous tumors to tan and fleshy in highly cel-
lular lesions (Fig. 2). Hemorrhage, calcification, or necrosis may

occur, particularly in the larger tumors [85-88]. Benign SFTs
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are typically well-circumscribed, but unencapsulated, whereas
malignant tumors often exhibit infiltrative borders and areas of
necrosis [89].

Tumors arising from serosal surfaces often exhibit an exo-
phytic appearance, whereas those within body cavities may be
present as polypoid, stalk-attached fibrous masses [3]. Pleural
SFTs are often large (>10 cm) and pedunculated, with a pedicle
containing prominent feeder vessels. Some cases lack direct
pleural attachment and can appear enclosed within the lung pa-
renchyma [37].

In the CNS, SFTs are usually dural-based, well-circumscribed,
firm, white to reddish-brown masses; however, they may occa-
sionally exhibit infiltrative growth or lack dural attachment [90-
92]. In the head and neck region, tumor size varies by anatom-
ical site, including approximately 2.5 cm in the larynx, 4 cm in

the salivary glands, and 5 cm in the sinonasal tract [46,52,53,89].

Histopathology

Histologically, classic SFTs display the so-called patternless pat-
tern, characterized by alternating hypocellular and hypercellular
areas, with tumor cells frequently interposed between collagen
bundles (Fig. 3A). The tumor cells are ovoid to spindle-shaped,
with vesicular nuclei, pale eosinophilic cytoplasm, and indis-
tinct cell borders, and are embedded in a variably collagenous
stroma (Fig. 3B). A characteristic feature is the presence of thin-
walled, branching, staghorn-shaped vessels (Fig. 3C). Perivascu-
lar hyalinization may also be observed (Fig. 3D). The degree of

cellularity varies considerably, ranging from sparsely scattered

Fig. 2. Macroscopic findings of solitary fibrous tumor. (A) The cut surface of the tumor is well-circumscribed, with a pinkish-gray, fleshy,
and solid appearance. (B) The tumor is multilobulated, with yellow-tan to gray coloration and prominent areas of hemorrhage.

https://doi.org/10.4132/jptm.2025.10.08
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Fig. 3. Histological findings of classic solitary fibrous tumor. (A) The tumor shows variation in cellularity, with prominent stromal collagen
deposition in the hypocellular regions. (B) The tumor cells are relatively uniform and spindle-shaped, with vesicular nuclei and scant pale
eosinophilic cytoplasm, arranged in a patternless architecture. (C) Branching, staghorn-shaped vessels are present. (D) Perivascular hyalin-
ization is present. (E) Cystic changes are present. (F) Epithelioid tumor cells are observed.

individual cells or linear clusters to highly cellular areas, even ~ and significant nuclear pleomorphism or necrosis is absent in
within the same tumor. The tumor cells are haphazardly ar-  conventional cases. Additional histological features may include
ranged within the stroma, often in a storiform configuration or =~ multinucleated giant cells, myxoid or cystic changes, and hem-
as randomly oriented fascicles. Mitoses are typically infrequent, ~ orrhage (Fig. 3E). Rarely, the foci of epithelioid or rhabdoid tu-
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mor cells may also be present (Fig. 3F).

Subtypes of solitary fibrous tumor
SFET subtypes share clinical, histological, and immunohisto-
chemical characteristics that support their close relationship.

Cellular solitary fibrous tumor

Cellular SFT is characterized by densely packed tumor cells
with indistinct cytoplasmic borders and prominent thin-walled,
branching staghorn-shaped vessels, with little or no intervening
stroma. This subtype corresponds to the originally described
hemangiopericytoma. The tumor cells are typically monoto-
nous, showing loss of spindled morphology and transition to a
more ovoid or rounded shape (Fig. 4A). Hemorrhage is com-

mon in cellular SFT, whereas necrosis may also be present.

Lipomatous (fat-forming) solitary fibrous tumor
Lipomatous (fat-forming) SFT is a rare histological subtype char-
acterized by mature adipose tissue forming an integral compo-
nent of the tumor. Histologically, it displays the typical features of
SFT mixed with a variable amount of mature fat (Fig. 4B) [35,93-
95]. An immature lipoblastic component may also be present.
Although the majority of lipomatous SFTs are benign, cases with
malignant histological features have also been reported [96].

Giant cell-rich solitary fibrous tumor

Giant cell-rich SFT (formerly known as giant cell angiofibroma)
is a rare SFT subtype that retains the typical morphological fea-
tures of conventional SFT, but contains a mixed population of
multinucleated giant cells scattered within the stroma and lining
pseudovascular spaces [97,98]. The tumor is composed of bland,
round-to-spindle cells and multinucleated giant cells (Fig. 4C).
It exhibits alternating hypocellular/sclerotic and hypercellular

areas, often associated with staghorn-shaped vasculature.

Myxoid solitary fibrous tumor

Focal myxoid change is a common finding in SFTs and may
result from an increase in mucin production by neoplastic cells
within the connective tissue. Myxoid SFT is a rare SFT subtype
characterized by diffuse and prominent myxoid changes involv-
ing most of the tumor and exhibit a hypocellular, bland histolog-
ical appearance (Fig. 4D) [99].

Malignant solitary fibrous tumor
Malignant SFT is defined by one or more adverse histological

https://doi.org/10.4132/jptm.2025.10.08
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features, including hypercellularity, increased mitotic activi-
ty (>4 mitoses per 10 high-power fields [HPFs]), cytological
atypia, tumor necrosis, and/or infiltrative margins (Fig. 4E, F)
[84,100,101]. Of these, a high mitotic count is considered the
most reliable predictor of aggressive behavior and poor clinical
outcome [30,102]. In accordance with the College of American
Pathologists (CAP) and WHO guidelines, it is currently rec-
ommended that mitotic activity be reported as the number of
mitoses per mm? With older models of microscopes, 10 HPFs
are equivalent to 1 mm®. With a modern microscope featuring a
0.5 mm field diameter, 5 HPFs correspond to an area of approx-
imately 1 mm?®. Risk-stratification models, such as that of Dem-
icco et al. [103], integrate clinical and pathological parameters to

improve prognostic accuracy.

Dedifferentiated solitary fibrous tumor

Dedifferentiated SFT accounts for less than 1% of all cases and
is characterized by an abrupt transition from conventional SFT
morphology to high-grade spindle or pleomorphic sarcoma fea-
tures (Fig. 4G, H) [104-112]. It may occur in various anatomical
sites, including the meninges and orbit. Heterologous elements,
such as rhabdomyosarcoma or osteosarcoma, have also been de-
scribed. Dedifferentiated SFT has a high risk of recurrence and
metastasis and portends a poor prognosis.

IMMUNOHISTOCHEMICAL FEA-
TURES

Immunohistochemical studies have shown that SFTs typically
exhibit strong, diffuse nuclear expression of STAT6 and CD34
(Fig. 5) [23,25,73,84,113]. The nuclear localization of STAT6
reflects the presence of the NAB2:STAT6 fusion and serves as
a sensitive and specific diagnostic marker that distinguishes
SET from histological mimics [114-117]. However, STAT6 ex-
pression has also been reported in dedifferentiated liposarcoma
(DDLPS) [118] and GLII-altered soft tissue tumor [119]. CD34
is expressed in approximately 81%-95% of cases, particularly in
low-grade tumors; however, its expression may be decreased or
lost in high-grade or dedifferentiated SFTs [120-123]. Similarly,
loss of STAT6 expression has been observed in dedifferentiated
or embolized tumors [121].

Gene expression profiling identified other markers that can
distinguish SFTs from their histological mimics. Among these,
glutamate ionotropic receptor AMPA type subunit 2 (GRIA2)
shows 80%-93% sensitivity for SFT [124]. Cytoplasmic aldehyde
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Fig. 4. Histological findings of solitary fibrous tumor subtypes. (A) Cellular subtypes. The tumor shows predominantly increased cellularity,
and the tumor cells exhibit a more ovoid or rounded cytomorphology. (B) Lipomatous (fat-forming) subtypes. The tumor shows areas of ma-
ture adipose tissue. (C) Giant cell-rich subtypes. There are abundant multinucleated tumor giant cells, which frequently line pseudovascular
spaces. (D) Myxoid subtype. The tumor shows prominent myxoid stroma with hypocellularity. Dilated, thin-walled vessels are present. (E)
Malignant subtype (high-risk solitary fibrous tumor). Mitotic figures (arrows) are frequently observed. (F) Malignant subtype (high-risk sol-
itary fibrous tumor). The tumor cells exhibit marked nuclear pleomorphism and cytological atypia. (G) Dedifferentiated subtype. The tumor
shows an abrupt transition from solitary fibrous tumor (left) to high-grade dedifferentiated area (right). (H) Dedifferentiated subtype. Clas-
sic solitary fibrous tumor shows strong, diffuse nuclear expression of STAT6, whereas the dedifferentiated area demonstrates loss of STAT6
expression.

dehydrogenase 1 (ALDH1) demonstrates 84% sensitivity and
99% specificity in differentiating SFT from meningioma and
synovial sarcoma (SS) [125]. Subsequent studies indicate that
ALDH]1 sensitivity ranges from 76% to 97% and GRIA2 sen-
sitivity ranges from 64% to 84%, with GRIA2 exhibiting lower
specificity compared with ALDH1 and STAT6 [111,112,126].
Other immunohistochemical markers, such as BCL2 and
CD99, are frequently positive. Epithelial membrane antigen
(EMA) and smooth muscle actin (SMA) show variable expres-
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sion, whereas desmin, S100 protein, SOX10, actins, cytokeratins,
and the progesterone receptor are typically negative or only
focally expressed [83,127,128]. Transducin-like enhancer of split
1 (TLE1) may show weak positivity [129]. Occasional PAX8
expression has also been reported, which may cause diagnostic
confusion with renal cell carcinoma [130]. Table 2 summarizes
the immunohistochemistry profiles for SFT.

https://doi.org/10.4132/jptm.2025.10.08
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Fig. 5. Immunohistochemical findings of solitary fibrous tumor. (A) The tumor cells demonstrate strong, diffuse cytoplasmic and membra-
nous expression of CD34. (B) The tumor cells show strong, diffuse nuclear expression of STAT6.

DIAGNOSTIC APPROACH

A systematic and integrated approach is required to accurately
diagnose SFTs. The process begins with a thorough histopatho-
logical evaluation of hematoxylin and eosin sections, particularly
at low magnification, to assess tumor borders, cellular uniformity,
and overall architecture. Key histological features include bland
spindle cell morphology, patternless or short fascicular architec-
ture, and stromal characteristics, such as hyalinization, myxoid
change, and the distinctive staghorn-shaped vascular pattern.
Recognizing these features is critical for distinguishing SFTs from
other spindle cell neoplasms with overlapping morphologies.

The clinical context, including patient age, tumor location,
and symptomatology, together with radiological findings, pro-
vides valuable complementary information. For example, a
well-circumscribed, hypervascular mass on imaging in a mid-
dle-aged or older adult supports the presumptive diagnosis of
SFT. These clinical-radiological correlations are particularly
helpful when histological findings are equivocal.

Immunohistochemistry plays an essential role in the diag-
nostic algorithm and has largely replaced electron microscopy
due to its accessibility and diagnostic utility. It is necessary not
only for establishing the line of differentiation but also for iden-
tifying molecular surrogates of specific genetic alterations. For
SFTs, strong, diffuse nuclear STAT6 expression, which serves as
a surrogate marker for the NAB2:STAT6 gene fusion, together
with CD34 positivity, constitutes a highly sensitive and specific
marker combination. These two markers are routinely used and
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are generally sufficient to confirm an SFT diagnosis in most
cases. However, they are not entirely specific, as focal STAT6
expression may also occur in other mesenchymal tumors, creat-
ing potential diagnostic pitfalls. Moreover, additional diagnostic
confusion may arise, particularly in tumors occurring in visceral
organs, such as the lung, salivary gland, or prostate [32,131]. For
example, entrapment of normal glandular epithelium should not
be misinterpreted as a biphasic neoplasm, such as phyllodes tu-
mor, pleomorphic adenoma, or sarcomatoid carcinoma (Fig. 6).
If STATG6 is negative, second-line antibodies, such as GRIA2 and
ALDHI, may be used.

For diagnostically challenging or histologically atypical cases,
fluorescence in situ hybridization (FISH) or next-generation
sequencing may provide additional diagnostic clarity. These
approaches are also helpful for detecting fusion genes or muta-
tions associated with dedifferentiation. They have been incorpo-
rated into routine diagnostic workflows to enhance diagnostic
precision and enable prognostic stratification, particularly in
high-grade or dedifferentiated subtypes. In summary, a com-
prehensive diagnostic approach that integrates morphologic,
immunophenotypic, clinical, and molecular data is essential for
achieving diagnostic accuracy, refining risk stratification, and

guiding appropriate patient management.

HISTOLOGICAL DIFFERENTIAL DI-
AGNOSIS

The histological differential diagnosis of SFT depends on the
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Table 2. Immunohistochemical profile of solitary fibrous tumors

Solitary fibrous tumor

Approximate

Immunostain frequency (%) Comment
Fusion-related marker
STAT6 >95 Strong, diffuse nuclear staining; highly sensitive and specific surrogate for

NAB2:STAT6 gene fusion, although rare exceptions have been reported in
other tumors’

Markers discovered by gene expression profiling

Stem cell marker; not entirely specific

Relatively specific; limited commercial availability
Rarely positive; not diagnostically useful

Commonly positive; may be lost in dedifferentiated SFT

Nonspecific; also positive in other tumors

Nonspecific; focal expression
Usually negative

Focal expression; may mimic nerve sheath tumors; potential diagnostic pitfall
Focal expression; potential diagnostic pitfall

Rare focal expression; may be confused with carcinoma
Relatively frequent expression; not a specific marker of SFT; potential diagnos-

tic pitfall

ALDH1 75-95

GRIA2 60-80

TLE1 <10
Endothelial marker

CD34 90-95
Neuroectodermal marker

CD99 ~70
Muscle markers

SMA 20-35

Desmin <5
Nerve sheath marker

S100 protein ~15
Epithelial markers

EMA 20-35

Cytokeratins <10

PAX8 ~40
Prognostic markers

p53 Variable

p16 Variable
Others

BCL2 ~30

Aberrant expression associated with malignant/dedifferentiated SFT°
Overexpression may be associated with aggressive behavior

Frequently expressed but nonspecific; limited diagnostic value

STATG, signal transducer and activator of transcription 6; ALDH1, aldehyde dehydrogenase 1; GRIA2, glutamate ionotropic receptor AMPA type sub-
unit 2; TLE1, transducin-like enhancer of split 1; SMA, smooth muscle actin; EMA, epithelial membrane antigen; PAX8, paired box gene 8; SFT, soli-

tary fibrous tumor; BCL2, B-cell lymphoma 2.

°STATG is rarely expressed in dedifferentiated liposarcoma and GLI1-altered soft tissue tumor; *TP53 mutation in approximately 40% of malignant

SFTs.

location and morphology of the tumor; however, it may be sub-
stantially improved by immunohistochemical detection of nu-
clear STAT6 expression. Accurate diagnosis requires a combina-
tion of clinical context, anatomic site, histopathological features,

and a focused immunohistochemical panel.

Spindle cell lipoma

Spindle cell lipoma (SCL) is a benign adipocytic tumor consist-
ing of variable amounts of mature adipocytes, bland spindle cells,
and ropy collagen [132]. It occurs most commonly in men aged
45-60 years and typically arises in the subcutaneous tissue of the
posterior neck, back, and shoulders. SCL is histologically charac-

terized by bland spindle cells arranged in small, aligned clusters
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within a myxoid matrix, accompanied by mature adipose tissue
and ropy collagen. The spindle cells are typically CD34-positive
[133,134] and show loss of nuclear RB1 protein expression [135].
SFTs with hyalinized stroma and admixed adipose tissue may
resemble SCL; however, SCLs rarely exhibit a staghorn-shaped
vasculature and lack nuclear STAT6 expression.

Nodular fasciitis

Nodular fasciitis (NF) is a benign, self-limited fibroblastic/myo-
fibroblastic neoplasm that frequently exhibits a recurrent USP6
rearrangement [136]. It is usually found in the subcutaneous
tissue of the extremities and is typically <3 cm in size. NF is

relatively common and can present at any age, although it most
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Fig. 6. Solitary fibrous tumor of the oral cavity. (A) Entrapped benign glandular inclusions are present within the tumor, mimicking pleo-
morphic adenoma. (B) The spindled tumor cells show strong, diffuse nuclear STAT6 expression, supporting the diagnosis of solitary fibrous

tumor.

frequently occurs in young adults. Histologically, NF consists
of plump, uniform fibroblasts and myofibroblasts arranged in a
tissue culture-like pattern, within a variably myxoid stroma that
often contains microcystic changes and extravasated erythro-
cytes. The tumor cells are positive for SMA and muscle-specific
actin (MSA), with occasional desmin expression, but consistent-
ly negative for STAT6. The identification of a USP6 rearrange-
ment can assist in diagnostically challenging cases [137-139].

Desmoid fibromatosis

Desmoid fibromatosis (DFM) is a locally aggressive, non-metas-
tasizing myofibroblastic neoplasm that is characterized by infil-
trative growth and a high propensity for local recurrence [140]. It
frequently arises in the extremities, abdominal cavity, retroperito-
neum, abdominal wall, and chest wall, and predominantly affects
young female adults, with a median age of 37-39 years. DFM is
driven by somatic CTNNBI mutations or inactivating germline
APC mutations [141-144]. Histologically, it consists of uniform
fibroblastic cells arranged in long, sweeping fascicles with collagen
deposition. Small-caliber vessels with perivascular edema are also
present. Immunohistochemically, DFM is positive for SMA and
MSA, and nuclear -catenin expression is observed in most cases.
STAT6 negativity helps distinguish DFM from SFT.

Cellular angiofibroma
Cellular angiofibroma (CAF) is a benign, cellular, and richly
vascular fibroblastic neoplasm that typically arises in the vul-

var or inguinoscrotal region [145]. It affects both sexes with a
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similar frequency, with peak incidence in women during the
fifth decade and in men during the seventh decade. Loss of
13q14, including RBI, is a characteristic genetic alterations in
CAFs [146,147]. Histologically, it consists of bland spindle cells
arranged in short fascicles among delicate collagen fibers, ac-
companied by numerous small- to medium-sized thick-walled
vessels, and may contain intermixed adipose tissue. Immunohis-
tochemically, CD34 is expressed in 30%-60% of cases, whereas
SMA and desmin are variably expressed in a minority of cases
[145,148]. Loss of nuclear RB1 expression is frequently ob-
served. CAF can mimic SFT morphologically; however, the ves-
sels are generally smaller, more hyalinized, and fibrotic. STAT6

expression is consistently negative.

Angiofibroma of soft tissue

Angiofibroma of soft tissue (AFST) is a benign fibroblastic
neoplasm characterized by a prominent, arborizing network of
numerous branching, thin-walled blood vessels [149]. It primar-
ily affects middle-aged adults, with a peak incidence in the sixth
decade of life [150-152]. AFSTs typically arise in the extremities,
particularly the legs. A recurrent t(5;8)(p15;q13) translocation,
resulting in an AHRR:NCOA2 gene fusion, occurs in approx-
imately 60%-80% of cases [151-153]. Histologically, AFST is
composed of bland, uniform short spindle cells embedded in a
variable myxoid or collagenous stroma with innumerable small,
thin-walled, branching blood vessels (Fig. 7). Immunohisto-
chemically, the tumor cells variably express EMA and CD34,

whereas desmin positivity may be observed in scattered dendrit-
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ic cells [150,152]. AFST often exhibits morphologic overlap with
SET; however, STAT6 expression is consistently absent.

Dermatofibrosarcoma protuberans
Dermatofibrosarcoma protuberans (DFSP) is a superficial, lo-
cally aggressive fibroblastic neoplasm. It is characterized by a
storiform arrangement of uniform spindle cells and is typically
associated with a COL1A1::PDGFB or related gene [154]. DESP
usually occurs on the trunk and proximal extremities, followed
by the head and neck region. It predominantly affects young to
middle-aged adults with a slight male predominance. Histologi-
cally, DFSP shows diftfusely infiltrative growth into surrounding
tissues, often producing a characteristic honeycomb pattern
within the subcutaneous fat. Immunohistochemically, the tumor
cells are diffusely positive for CD34 and negative for STAT6. In
contrast, SFTs are usually well-circumscribed and show nuclear
STAT6 expression, which serves as a distinguishing feature.

Deep fibrous histiocytoma

Deep fibrous histiocytoma (DFH) is a benign morphological
variant of fibrous histiocytoma that arises entirely within the
subcutaneous or deep soft tissue [155]. It occurs over a wide
age range (6-84 years old, with a median age of 37 years) with
a slight male predominance. The extremities are the most com-
monly affected sites, followed by the head and neck region.
Approximately 10% of cases occur in visceral soft tissues, such
as the retroperitoneum, mediastinum, and pelvis [156]. Rear-
rangements of either PRKCB or PRKCD have been identified

Solitary fibrous tumor

[157,158]. Histologically, DFH is a well-circumscribed lesion
that exhibits monomorphic spindle-shaped or histiocytoid cells
arranged in a mixed fascicular and storiform pattern, which is
often accompanied by prominent branching vessels. Approxi-
mately 40% of DFHs express CD34 [156]. These cases may be
challenging to distinguish from SFTs; however, they are charac-
teristically negative for STAT6.

Myopericytoma

Myopericytoma is a distinctive perivascular myoid neoplasm
that forms part of a morphological spectrum with myofibroma
[159]. It occurs at any age but is most commonly observed in
adults. It usually involves the distal extremities, followed by
the proximal extremities, neck, trunk, and oral cavity. Muta-
tions in the PDGFRB gene may underlie a shared pathogenesis
among myopericytoma, myopericytomatosis, and myofibroma
[160,161]. In addition, cellular or atypical myofibromas are as-
sociated with SRF::RELA gene fusions [162]. Histologically, my-
opericytoma consists of bland, myoid-appearing spindled cells
arranged in a concentric perivascular pattern around numerous
small vessels (Fig. 8A). Immunohistochemically, myopericy-
tomas express SMA and caldesmon, with focal positivity for
desmin and/or CD34 (Fig. 8B). In contrast, SFTs do not show
concentric perivascular architecture but instead demonstrate
diffuse CD34 and STAT6 positivity.

Sinonasal glomangiopericytoma
Sinonasal glomangiopericytoma is a distinctive soft tissue tumor

Fig. 7. Angiofibroma of soft tissue. (A) The tumor is composed of uniform, spindle-shaped tumor cells with prominent, thin-walled, branch-
ing blood vessels. (B) CD34 immunostaining highlights thin-walled, branching blood vessels.
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of the sinonasal tract characterized by perivascular myoid differ-
entiation [163]. It occurs at any age, but most commonly presents
in the sixth or seventh decade of life, with a slight female predi-
lection. Unilateral involvement of the nasal cavity, particularly
the turbinates and septum, is typical, whereas bilateral disease is
rare and occurs in fewer than 5% of cases. Molecular alterations
include recurrent missense mutations in exon 3 of CTNNBI. His-
tologically, the tumor appears as an ovoid to spindled syncytium
of myoid-type cells within a richly vascularized stroma (Fig. 9A).
Perivascular hyalinization with extravasated erythrocytes, mast

cells, and eosinophils is commonly observed. The tumor cells ex-
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hibit strong SMA and nuclear B-catenin expression, with variable
CD34 positivity (Fig. 9B) [164,165]. In contrast, SFTs are positive
for CD34 and STATS, but negative for SMA.

Dedifferentiated liposarcoma
DDLPS arises through progression from an atypical lipomatous

tumor (ALT) or well-differentiated liposarcoma (WDLPS) into
a non-lipogenic sarcoma of variable histologic grade [166]. It
most frequently occurs in the retroperitoneum, followed by the
spermatic cord and, more rarely, the mediastinum, head and

neck, and trunk. DDLPS predominantly affects middle-aged

Fig. 8. Myopericytoma. (A) The ovoid tumor cells are arranged in a concentric perivascular growth pattern. (B) The tumor cells show homo-

geneous expression of smooth muscle actin.
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Fig. 9. Sinonasal glomangiopericytoma. (A) The tumor cells have ovoid nuclei, eosinophilic cytoplasm, and indistinct cell borders, with dilat-
ed, thin-walled blood vessels. Extravasated red blood cells are also observed. (B) The tumor cells show strong, diffuse nuclear expression of

[3-catenin.
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adults, with a peak incidence in the fourth to fifth decade of life,
and show no significant sex predilection. Approximately 90% of
cases develop de novo, whereas about 10% arise from recurrent
ALT/WDLPS [167]. DDLPS shares molecular features with ALT/
WDLPS, as both harbor amplification of MDM2 (mouse double
minute 2 homolog) and CDK4 (cyclin-dependent kinase 4) on
chromosome 12q14-q15 [168,169]. Histologically, DDLPS shows
an abrupt or gradual transition from a WDLPS to a spindle cell or
pleomorphic non-lipogenic tumor (rarely lipogenic), which may
be low or high grade. Inmunohistochemically, nuclear positivity
for MDM2 and CDK4 is observed in most cases. Lipomatous
SFTs may be mistaken for WDLPS or DDLPS because of their
fat-containing appearance, particularly in limited biopsy samples
or imaging studies. Rarely, DDLPS may display an SFT-like mor-
phology and even show STAT6 positivity [118], whereas SFTs
are typically negative for MDM2 and CDK4. Myxoid SFT may
resemble myxoid liposarcoma; however, DDIT3 FISH is negative,

and STAT®6 expression is diffusely positive in SFTs.

Gastrointestinal stromal tumor

Gastrointestinal stromal tumors (GISTs) are mesenchymal neo-
plasms with variable biological behavior and are characterized
by differentiation toward the interstitial cells of Cajal [170].
GISTs can occur at any site within the gastrointestinal tract,
whereas extragastrointestinal GISTs most commonly develop in
the mesentery, omentum, and retroperitoneum. Sporadic GISTs
occur at any age, but most cases appear in the sixth decade of life
(median age, 60 to 65 years), with a slight male predominance
[171]. Most GISTs have activating mutations in KIT or PDG-
FRA. Histologically, GISTs display a broad morphological spec-
trum and typically consist of relatively monomorphic spindle
cells, epithelioid cells, or a mixture of both. Immunohistochemi-
cally, GISTs positively express CD34, CD117 (KIT), and DOGI.
They may closely resemble SFTs, but can be distinguished by
their positive CD117 (KIT) and DOGI expression, and negative
STAT®6 expression.

Malignant peripheral nerve sheath tumor

Malignant peripheral nerve sheath tumor (MPNST) is a ma-
lignant spindle cell neoplasm with Schwannian differentiation
[172]. It most commonly arises in older adults during the
seventh decade of life, although it can occur across a wide age
range [173]. Approximately 50% of cases occur in association
with neurofibromatosis type 1 (NF1), 10% are associated with

prior radiation exposure, and the remainder are sporadic [174].
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MPNST most frequently involves the trunk and extremities,
followed by the head and neck region. At the molecular level,
MPNSTs exhibit complex structural and numerical chromo-
somal abnormalities, and biallelic inactivation of the NFI gene
is commonly observed in MPNST [175,176]. Histologically,
conventional MPNST displays fascicular growth of relatively
uniform spindle cells, alternating hypercellular and hypocellular
areas, perivascular accentuation, and geographical necrosis (Fig.
10A). The tumor cells show focal positivity for S100 protein and
SOX10 expression, along with loss of H3K27me3 expression
(Fig. 10B) [177]. MPNST may resemble cellular SFT; however,
it is usually negative for CD34 and STAT6, while showing focal
expression of S100 protein and SOX10.

Synovial sarcoma

SS is a monomorphic spindle cell sarcoma with variable epithe-
lial differentiation. It is defined by S§18::SSX1, §§18::S5X2, or
§518::55X4 gene fusions [178]. Approximately 70% of the cases
occur in the deep soft tissue of the extremities, often near joints,
with 15% in the trunk and 7% in the head and neck. SS can
occur at any age, with no sex predilection, although half of the
patients are adolescents or young adults [179]. Histologically,
SS may be classified into three subtypes: monophasic (dense
fascicles of monomorphic spindle cells with staghorn-shaped
vasculature), biphasic (containing epithelial and spindle compo-
nents), and poorly differentiated (high cellularity, nuclear atypia,
and brisk mitotic activity) (Fig. 11A) [180]. TLE1 shows nuclear
positivity in up to 95% of cases, with patchy to focal cytokeratin
and EMA staining. $§18::SSX fusion-specific and SSX-specific
C-terminal antibodies have recently been developed that yield
strong, diffuse nuclear staining with >95% sensitivity and speci-
ficity (Fig. 11B) [181]. Cellular SFT can mimic SS; however, SSs
are typically negative for CD34 and STATS6.

Phosphaturic mesenchymal tumor
Phosphaturic mesenchymal tumors (PMTs) are morphological-

ly distinct neoplasms that cause tumor-induced osteomalacia,
most often through overproduction of fibroblast growth factor
23 (FGF23) [182]. PMTs may arise in almost any soft tissue or
bone, but are uncommon in the retroperitoneum, viscera, and
mediastinum. They frequently affect middle-aged adults with no
sex predilection, although they can also develop in pediatric and
elderly patients. Approximately half of all PMTs harbor FNI::FG-
FRI fusions and, rarely, FN1::FGF1 fusions [183,184]. Histolog-
ically, PMT consists of bland spindle-shaped cells with charac-
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Fig. 11. Monophasic synovial sarcoma. (A) The tumor is composed of dense fascicles of monomorphic spindle cells with staghorn-shaped
vasculature. (B) The tumor cells demonstrate strong, diffuse nuclear staining for SS18-SSX fusion-specific antibody.

teristic grungy calcification and a prominent capillary network,
with occasional staghorn-shaped vessels. PMT exhibits variable
ERG, SATB2, and CD56 expression. FGF23 expression has been
reported in some cases, but currently available antibodies lack
specificity, which limits their diagnostic utility [185,186]. PMTs
may mimic SFTs; however, SFTs lack the grungy calcified matrix
typical of PMTs and usually show CD34 and STAT® positivity.

Mesenchymal chondrosarcoma
Mesenchymal chondrosarcoma (MCS) is a high-grade malig-
nant tumor with a distinct biphasic pattern. It consists of primi-

https://doi.org/10.4132/jptm.2025.10.08

tive undifferentiated mesenchymal cells and well-differentiated
hyaline cartilage [187]. MCS most commonly arises in the sec-
ond or third decade of life, with a median age of approximately
30 years and a slight male predominance. MCS exhibits a broad
anatomical distribution, involving bone, soft tissue, and intra-
cranial locations. Approximately 40% of cases occur in somatic
soft tissues, and the meninges are a common extra-skeletal site
[188]. At a molecular level, MCS harbors a specific and recur-
rent HEY1:NCOA?2 fusion, which has been identified in nearly
all cases [189]. Histologically, MCS exhibits undifferentiated
tumor cells, cartilage islands, and a staghorn-shaped vascular
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pattern. The undifferentiated tumor cells often express CD99,
SOX9, and NKX2.2 [190], and may occasionally show aberrant
expression of desmin, myogenin, and MYODI1. Because the car-
tilage foci may be scant or absent in limited biopsies, MCS may
be mistaken for malignant SFT; however, SFTs are distinguished
by nuclear STAT6 positivity, which is absent in MCSs.

Table 3 provides an overview of the differential diagnosis of
SFTs, summarizing the clinical, histological, immunohistochem-
ical, and molecular features of morphologically similar entities.

Fig. 12 shows diagnostic algorithm and differential diagnosis
of SFT.

PROGNOSIS

SFTs exhibit a broad spectrum of clinical behavior, with local or
distant recurrence occurring in 10%-30% of cases and, occa-
sionally, >15 years after treatment [30,31,101,191]. To improve
prognosis, multivariate risk models have been developed and
validated across various anatomical sites. The most commonly
used model includes mitotic count, tumor size (=5 cm), and
patient age (=55 years), with some modifications that also in-
clude necrosis as a fourth parameter [31,103,192]. Table 4 pres-
ents three-variable and modified four-variable risk models for
predicting metastatic risk in SFTs [31,103]. These models are
superior to the traditional benign versus malignant classification
and may be applied to thoracic, extra-thoracic, and gynecologic
SFTs.

At the molecular level, TERT promoter mutations and TP53
loss are more frequently observed in high-grade or dedifferen-
tiated tumors [77,193]. Positive p53 expression and elevated Ki-
67 index (>5%) are associated with poorer prognosis in some
studies [54].

In the CNS, SFTs exhibit higher rates of long-term recurrence
and metastasis, even in WHO grade 1 cases. Mitotic activity and
necrosis, rather than tumor size or patient age, are the strongest
predictors of progression. A three-tiered histologic grading
scheme was recommended for CNS SFTs [39,76]. In the head
and neck region, most SFTs behave indolently, with recurrence
rates <10%; however, ocular adnexal SFTs exhibit a higher local
recurrence rate (~25%) with a low metastatic potential (~2%)
[46,194]. Positive surgical margins and dedifferentiation are
independent risk factors of relapse. If metastasis occurs, it most

often involves the lungs, bones, and liver [55].
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TREATMENT

The management of SFT should be done in specialized sarcoma
centers with a multidisciplinary team experienced in this rare
entity [7]. Treatment response is generally assessed using Re-
sponse Evaluation Criteria in Solid Tumors (RECIST); however,
because of the hypervascular nature of SFT, some studies also
use the Choi criteria, which is defined as a >10% decrease in tu-

mor size or a >15% decrease in tumor density [195-197].

Localized lesions

Complete en bloc surgical resection with negative margins (R0)
is the gold standard for treatment. The 10-year overall survival
rate following RO resection ranges from 54% to 89% [198-200].
If margins are positive (R1/R2), re-resection should be consid-
ered where feasible. Adjuvant radiotherapy (RT) can achieve
>80% 5-year local control for high-risk or margin-positive cases,
although no survival benefit has been demonstrated [68,201-
204]. Preoperative RT may be considered in selected cases to
increase resectability; however, there is no proven role for neo-
adjuvant or adjuvant chemotherapy [205-207]. SFTs generally
do not respond well to conventional sarcoma regimens. Thus,
systemic therapy should be reserved for clinical trials or in very
high-risk situations.

Advanced or metastatic lesions

Isolated, resectable metastases (e.g., lung) can be treated with
surgery or ablative methods. RT is an option for local control in
selected cases. Conventional chemotherapy demonstrates low
overall response rates (0%-20%) [208,209]. Anthracycline-based
regimens are used as first-line therapy. Ifosfamide, dacarbazine,
or trabectedin may be administered in later lines [210-212].
Median progression-free survival is generally limited to 4-5
months. Because SFTs are highly vascular, antiangiogenic thera-
py has shown promising results. Pazopanib, sunitinib, sorafenib,
and temozolomide plus bevacizumab have achieved partial re-
sponses and significant disease control [213-218]. In prospective
trials, pazopanib produced partial responses in >50% of patients
by Choi criteria, supporting its role as a potential first-line thera-
py for advanced SFT. IGF-1 is frequently overexpressed in SFTS.
Figitumumab, an anti-IGF-1 receptor monoclonal antibody, has
shown efficacy in some advanced cases [218,219]. Data on im-
munotherapy are limited, although anecdotal durable responses
have been reported with programmed death-1 inhibitors (e.g.,

pembrolizumab) [220,221]. Ongoing studies are evaluating
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Table 4. Three-variable and four-variable risk models for predicting metastatic risk in solitary fibrous tumors

Risk factor Cut-off Points (3-variable model) Points (4-variable model)
Patient age (yr) <55 0 0
>55 1 1
Mitoses per mm” 0(0) 0 0
(mitoses per 10 HPFs) 05-15 (1-3) 1 1
>2 (24) 2 2
Tumor size (cm) 0-4.9 0 0
5-9.9 1 1
10-14.9 2 2
215 3 3
Tumor necrosis <10% N/A 0
>10% N/A 1
Risk category (total points)® Low risk 0-2 0-3
Intermediate risk 3-4 4-5
High risk 5-6 6-7

HPF, high-power field; N/A, not applicable.
*Point ranges indicate cumulative risk scores.

combinatorial approaches with immune checkpoint inhibitors

and antiangiogenic agents.

FUTURE PERSPECTIVES

The current understanding of SFTs is primarily based on retro-
spective case series and preclinical studies, which limits the gen-
eralizability and robustness of existing diagnostic and therapeu-
tic strategies [222]. Consequently, substantial gaps remain in the
areas of tumor biology, prognostication, and optimal treatment
pathways.

A critical area of investigation is the prognostic relevance of
the specific NAB2:STAT6 gene fusion variants. Although the
NAB2::STAT6 fusion is a molecular hallmark of SFTs, its tran-
script variants and their effects on tumor behavior, metastatic
potential, and treatment response remain unclear. Prospective
studies integrating molecular and clinicopathological data are
essential for developing reliable, fusion-based risk stratification
models.

The development of advanced molecular platforms, such as
NGS, offers the ability not only to detect NAB2::STAT6 gene
fusions but also to identify additional genetic alterations with
prognostic or therapeutic significance. In addition, ongoing
research into the immunologic profile of SFTs warrants further
study of immune checkpoint inhibitors and other immunother-
apeutic strategies.

Ultimately, progress in SFT management will depend on

https://doi.org/10.4132/jptm.2025.10.08

coordinated efforts to refine molecular classification, improve
diagnostic accuracy, and develop targeted therapies tailored to
individual patient risk profiles.

Recent advances in artificial intelligence and digital pathology
suggest new opportunities for prognostic assessment in SFTs. By
enabling quantitative and reproducible evaluation of histomor-
phological features, Al-based image analysis may complement
existing clinicopathological models. Although data are still lim-
ited, future integration of these technologies could enhance risk

stratification and individualized patient management.

CONCLUSION

SFT is a rare fibroblastic neoplasm that poses significant diagnos-
tic and therapeutic challenges. Its broad histological spectrum
and frequent morphological overlap with other soft tissue tumors
make accurate diagnosis difficult, often requiring an integrated
approach that combines immunohistochemistry and molecular
testing. A comprehensive understanding of SFT, including its
histological variants, molecular subtypes, and variable clinical be-
havior, is essential for optimizing surgical management, identify-
ing patients requiring systemic therapy, and establishing effective
long-term surveillance protocols. As the molecular mechanisms
underlying SFT are further elucidated, it will be critical to incor-
porate these advances into clinical practice to enhance diagnostic
precision, refine risk stratification, and enable the development of

personalized treatment strategies.
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CLDN18.2 overexpression is associated with poor prognosis in gastric cancer patients. Transcriptomic and proteomic analyses
- CONCLUSION demonstrate that CLDN18.2 promotes tumor progression and metastasis, underscoring its potential as an independent prognostic
factor in high-incidence regions.
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Background: The tight junction protein claudin18.2 (CLDN18.2) has been implicated in poor prognosis and suboptimal immunotherapy re-
sponse in gastric cancer (GC). This study investigates the clinicopathological relevance of CLDN18.2 expression and its association with molecu-
lar subtypes in GC patients from a high-incidence region, combining transcriptomic and proteomic approaches to explore how CLDN18.2 con-
tributes to progression and metastasis. Methods: A retrospective cohort of 494 GC patients (2019-2024) underwent immunohistochemical
analysis for CLDN18.2, Epstein-Barr virus (Epstein—-Barr virus—encoded RNA), p53, human epidermal growth factor receptor 2 (HER2), and mis-
match repair proteins (MLH1, MSH2, PMS2, and MSH6). CLDN18.2 positivity was defined as moderate to strong (2+/3+) membranous staining in
>75% of tumor cells. Clinicopathological correlations, biomarker associations, and survival outcomes were evaluated. Transcriptomic and pro-
teomic sequencing was performed to explore molecular mechanisms. Results: CLDN18.2 positivity was observed in 26.9% (133/494) of gastric
adenocarcinomas. CLDN18.2-positive tumors correlated with TNM stage (p = .003) and shorter overall survival (p = .018). No associations were
identified with age, sex, HER2 status, microsatellite instability, or Epstein-Barr virus infection. Transcriptomic profiling revealed CLDN18.2-high
tumors enriched in pathways involving cell junction disruption, signaling regulation, and immune modulation. Proteomic profiling showed that
tumors with high CLDN18.2 were enriched in multiple mechanism-related pathways such as integrated metabolic reprogramming, cytoskeletal
recombination, immune microenvironment dysregulation, and pro-survival signaling. These mechanisms may collectively contribute to tumor
progression and metastasis. Conclusions: CLDN18.2 overexpression is associated with poor prognosis in GC patients. Transcriptomic and pro-
teomic analyses demonstrate that CLDN18.2 promotes tumor progression and metastasis, underscoring its potential as an independent prog-
nostic factor in regions with a high incidence of GC.
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INTRODUCTION

Gastric cancer (GC) is the fifth most common malignancy
and cause of cancer mortality globally, with approximately one
million new cases diagnosed annually [1]. Despite advances
in diagnostic and therapeutic strategies, clinical outcomes for
advanced GC remain dismal, with limited patient eligibility for
targeted therapies and a 5-year survival rate less than 30% [2-4].
This underscores the urgent need to elucidate molecular driv-
ers of tumor progression and identify biomarkers for precision
medicine.

Gastric adenocarcinoma is characterized by profound
molecular heterogeneity, complicating efforts to standardize
treatment paradigms [5]. While the Lauren classification has
historically guided clinical management, its utility in predicting
therapeutic responses remains constrained [6]. Landmark work
by The Cancer Genome Atlas (TCGA) redefined GC into four
molecular subtypes of chromosomally unstable, microsatellite
unstable, genomically stable, and Epstein-Barr virus—positive
(EBV+) tumors, providing a framework for molecularly strat-
ified therapies [7]. However, the clinical translation of these
subtypes remains uncertain, necessitating the discovery of ac-
tionable biomarkers to refine patient stratification.

Claudin18.2 (CLDN18.2), a splice variant of the tight junc-
tion protein claudin18, has emerged as a promising therapeutic
target [8]. It is confined to gastric mucosal tight junctions in
normal tissues but is exposed on the surface upon malignant
transformation [9,10]. In addition to GC, aberrant CLDN18.2
expression is observed in pancreatic, biliary, ovarian, and lung
adenocarcinomas, positioning it as a selective biomarker [11].

Preclinical and clinical studies, including trials of the mono-
clonal antibody zolbetuximab (formerly IMAB362) and an-
tibody-drug conjugates (ADCs) targeting CLDN18.2, have
demonstrated significant antitumor efficacy in CLDN18.2-high
GC subsets [12,13]. For instance, the phase III SPOTLIGHT
and GLOW trials validated zolbetuximab combined with
chemotherapy as a first-line regimen for CLDN18.2-positive/
human epidermal growth factor receptor 2 (HER2)-negative
advanced GC, achieving median overall survival (OS) of 18.23
months and 14.39 months, respectively [9,14]. Additionally,
novel ADCs such as CMG901 (AZD0901) demonstrated an
objective response rate of 28%-29% and median OS of 10.1
months in a phase I trial for refractory GC [15].

Despite advances in CLDN18.2-targeted therapies, its ex-

pression exhibits heterogeneity across geographical regions and
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ethnic groups. In Gansu Province, a global GC hotspot with
elevated incidence linked to the arid climate and high dietary
nitrosamines, our prior analysis of 75,522 GC patients (2013—
2021) identified climatic factors as key contributors to GC risk
[16]. To address the research gap of CLDN18.2 in this region,
we conducted a comprehensive multi-omics investigation en-
compassing immunohistochemistry (IHC), transcriptomic pro-
filing, and proteomic analysis in 494 GC patients from this re-
gion. This study evaluated the relationships between CLDN18.2
expression and molecular subtype, clinicopathological features,
and survival outcomes and further explored its potential mech-

anisms in GC progression and metastasis.

MATERIALS AND METHODS

Case selection
During the period 2019-2024, we conducted a retrospective

cohort study of 510 patients with gastric adenocarcinoma who
underwent radical surgical resection in the Second Hospital of
Lanzhou University. All specimens were obtained surgically in
patients who had not undergone neoadjuvant chemotherapy.

Patient inclusion criteria were (1) preoperative endoscop-
ic biopsy-confirmed GC; (2) indications for GC surgery; (3)
eligible for curative resection; (4) adequate function of other
organ systems to tolerate surgery, without comorbidities (such
as severe cardiac, cerebral, pulmonary, or metabolic diseases)
significantly impacting surgical risk; (5) informed consent by
both the patient and their family for curative GC resection; and
(6) availability of complete medical records. Patient exclusion
criteria were (1) unsuitable for curative GC surgery (defined
as RO resection with D2 lymphadenectomy) due to invasion
of adjacent organs or concurrent other tumors; (2) significant
comorbidities potentially impacting the surgery; (3) presenta-
tion as a surgical emergency; (4) refusal of the surgical plan by
either the patient or their family; and (5) incomplete medical
records or patient withdrawal from the study.

After excluding 16 ineligible samples, the final cohort com-
prised 494 patients. Clinicopathological data were systematically
collected, including demographic variables (sex, age), diagnosis
schedule (date of initial diagnosis), tumor characteristics (grade,
location, histotype, Lauren classification), biomarker profiles
(HER?2, p53, Epstein-Barr virus—encoded RNA [EBER], MSH2,
MSH6, MLH1, and PMS2), and OS outcomes. Tissue specimens
were fixed in formalin within 48 hours post-resection and pro-

cessed according to standardized histopathological protocols.
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Immunohistochemistry

IHC analyses on fresh-frozen paraffin-embedded specimens
were conducted using a fully automatic slide stainer, the Ven-
tana Benchmark Ultra automated staining platform (Roche
Diagnostics, Basel, Switzerland), with the Ultra View DAB
detection kit. HER2 (Kit-0043, MXB), p53 (MAB-0674, MXB),
PMS2 (RMA-0775, MXB), MSH2 (MAB-0836, MXB), MSH6
(MAB-0831, MXB), MLH1 (MAB-0838, MXB), EBER, and all
immunoreagents were obtained from Ventana Medical Systems
(Roche Diagnostics).

CLDN18.2 expression was assessed using a polyclonal an-
tibody (1:500 dilution, ab222513, Immunoway, San Jose, CA,
USA) through immunohistochemical analysis. Two experi-
enced pathologists independently evaluated the cytoplasmic
staining patterns based on established criteria. Staining in-
tensity was graded as strong (3+), moderate (2+), weak (1+),
or absent (0), and the percentage of stained tumor cells was
recorded. A staining index (SI) ranging from 0 to 12 was calcu-
lated by multiplying the intensity score by the percentage score.
Based on predefined clinical thresholds, cases were categorized
by expression intensity as absent (SI 0), weak (SI 1-2), moder-
ate (SI 3-6), or strong (SI 8-12). Cases were classified accord-
ing to a cutoff of 275% tumor cell 2+ or 3+ intensity, which
is the eligible IHC cut-off for an ongoing zolbetuximab study
[17]. In samples undergoing RNA and protein sequencing,
high CLDNI18.2 expression is defined as immunohistochem-
ical staining intensity >2+ in 275% of tumor cells, while low
CLDN18.2 expression is defined as staining intensity <2+ in
240% of tumor cells.

Mismatch repair deficiency (MMRd) was determined by
loss of MLH1, MSH2, MSH6, or PMS2 on IHC [18]. p53 status
was defined as wild-type (patchy nuclear staining) or aberrant
(diffuse or complete loss) [19]. HER2 status assessment for
gastric adenocarcinoma requires IHC testing, with specimens
classified as negative (IHC 0/1+: no/faint reactivity), equivocal
(IHC 2+: weak-moderate membranous reactivity in >10% tu-
mor cells), or positive (IHC 3+: strong membranous reactivity
in 210% tumor cells). Equivocal cases require confirmation
via in situ hybridization (ISH), where positivity is defined as
HER2:CEP17 ratio 22 or HER2 copy number >6.0 signals/cell;
THC 0/1+ or 3+ results preclude additional ISH testing [20].

EBER in situ hybridization
EBV infection was detected using the ISH EBER Probe (MC-3003,

MXB) on the Ventana platform per manufacturer guidelines.

https://doi.org/10.4132/jptm.2025.09.11
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RNA and protein sequencing

Paired tumor and adjacent normal tissues from eight gastric
adenocarcinoma patients were collected as fresh-frozen sam-
ples, snap-frozen in liquid nitrogen, and stored at —80°C until
processing. For RNA extraction, tissues were homogenized in
TRIzol reagent (Invitrogen, Carlsbad, CA, USA). After chlo-
roform phase separation, RNA was precipitated with isopro-
panol, washed with 75% ethanol, air-dried, and dissolved in
RNase-free water. RNA integrity was verified via agarose gel
electrophoresis (1% gel; 120 V, 20 minutes), confirming distinct
185/28S ribosomal RNA bands without degradation. Only
high-quality RNA (RNA integrity number > 7.0 implied by gel
assessment) was used for cDNA synthesis.

For protein extraction, tissues were mechanically disrupted
in lysis buffer (8 M urea, 2% sodium dodecyl sulfate) using a
glass homogenizer, followed by centrifugation (14,000 xg, 20
minutes, 4°C). The supernatant was collected, and total pro-
tein was quantified via BCA assay (Pierce, Rockford, IL, USA).
Quality control was performed using sodium dodecyl sulfate
polyacrylamide gel electrophoresis (12% gel; 80 V, 2 hours), en-
suring intact protein bands without smearing.

Subsequent RNA sequencing included reverse transcription
polymerase chain reaction-based cDNA amplification, Illumi-
na-compatible paired-end library preparation, and sequencing
on the HiSeq platform. For proteomics, proteins were dena-
tured, reduced (10 mM dithiothreitol), alkylated (50 mM iodo-
acetamide), and digested with trypsin (2 hours, 37°C). Peptides
were desalted (C18 SPE), fractionated (high-pH reverse-phase
high-performance liquid chromatography), lyophilized, recon-
stituted, separated via nano-LC (C18 column), and analyzed by
tandem mass spectrometry. A data-dependent acquisition spec-
tral library was generated; differential proteins were identified
using Spectronaut (v16.1), with functional enrichment (Gene
Ontology [GO]/Kyoto Encyclopedia of Genes and Genomes
[KEGG]) and subcellular localization analyses.

Statistical analysis

Associations between CLDN18.2 and clinicopathological vari-
ables were assessed using x* or Fisher’s exact test (significance
threshold: p < .05). The Kaplan-Meier method and log-rank test
were used to calculate the survival curve. Statistical analysis was
performed using SPSS software ver. 26.0 (IBM Corp., Armonk,
NY, USA). The statistical results were plotted using GraphPad
Prism 9.1.0 (GraphPad Software Inc., San Diego, CA, USA).
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RESULTS

Clinicopathological correlates and prognostic signif-
icance of CLDN18.2 expression in primarily resected
gastric adenocarcinomas

The study cohort comprised 494 gastric adenocarcinoma pa-
tients, comprising 380 males (76.9%) and 114 females (23.1%),
with a mean age of 58.54 + 9.66 years (median, 59 years; range,
22 to 85 years) (Table 1). All patients underwent surgical re-
section of the primary tumor with an RO margin. Tumor local-
ization analysis revealed that nearly half of the cases originated
in the gastric antrum, while 23.1% and 22.9% were located in
the gastric fundus and body, respectively. Pathological staging
demonstrated distinct distributions: pT4a and pT4b tumors
predominated in pathological tumor (pT) staging (n = 276,
55.8%), whereas pathological nodal (pN) staging showed a
higher frequency of pNO (n = 171, 34.6%). TNM staging clas-
sified 22.3% (n = 110) as stage I, 20. 9% (n= 103) as stage II,
and 56.8% (n = 281) as stage III-IV. Among them, 200 cases
received postoperative chemotherapy, while 81 cases did not
(Supplementary Fig. S1). Histologically, 8.5% (n = 42) of tu-
mors were graded as G1, 55.3% (n = 273) as G2, and 36.2% (n =
179) as G3. Lauren classification categorized 31.8% (n = 157) as
intestinal type, 40.9% (n=202) as diffuse type, and 27.3% (n =
135) as mixed type. The results demonstrated significant associ-
ations of CLDN18.2-positive status with pT category (p = .046),
PN category (p = .013), and TNM stage (p = .003). No signifi-
cant correlations were observed with age, sex, tumor location,
histological grade, or Lauren subtype (Table 1). Representative
immunohistochemical staining patterns of CLDN18.2 expres-
sion are presented in Fig. 1. Our survival analysis revealed that
CLDN18.2-positive expression was associated with significantly
shorter OS (p = .018) (Fig. 2).

Characteristics of molecular biomarkers

MMRd was identified in 6.3% (n = 31) of cases, with 93.7% (n
= 463) demonstrating mismatch repair proficiency. EBV in-
fection was detected in 2.0% (n=10) of tumors, while 98.0% (n
= 484) tested negative. HER2 overexpression or amplification
was observed in 16.2% (n = 80) of cases, while 83.8% (n = 414)
lacked HER?2 alterations. TP53 abnormalities were present in
46.8% (n=231) of cases, accounting for approximately half of
the total cohort (Table 2). No correlation between the expres-
sion of CLDN18.2 and MMRd, HER2, TP53, or EBER-ISH was

found.
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Analysis of the biological function of genes significant-
ly related to CLDN18.2 by RNA sequencing

We divided the eight pairs of tissue samples after sequencing
into high CLDN18.2 expression (n = 4) and low expression
(n = 4) groups. Compared with the low-expression group, the
high-expression group showed 183 genes that were signifi-
cantly differentially expressed and strongly correlated with
CLDN18.2, including 133 upregulated and 50 downregulated
genes (Fig. 3A, B). This indicates that broad transcriptional
reprogramming is associated with CLDN18.2 overexpression.
GO enrichment analysis across cellular components, molecular
function, and biological processes identified functional clusters
in CLDN18.2-high tumors (Fig. 3C, D). Cellular component
enrichment predominantly comprised terms related to mem-
brane integrity, including cell periphery, intrinsic membrane
component, and integral plasma membrane component. Mo-
lecular function analysis highlighted steroid binding, flavonol
3-sulfotransferase activity, and inorganic anion transmembrane
transporter activity. Biological process terms were enriched
in pathways governing organic hydroxy compound trans-
port, cholesterol transport, and vitamin E metabolism. KEGG
pathway analysis further identified significant enrichment
in phagosomes, cytokine-cytokine receptor interactions, and
chemical carcinogenesis (Fig. 3E, F). These results suggest that
CLDN18.2 may influence tumor progression and metastasis via
mechanisms involving cell junction disruption, signaling path-

way regulation, and immune regulation.

Analysis of the biological functions of genes signifi-
cantly associated with CLDN18.2 on proteome se-
quencing

Based on proteome sequencing analysis, the CLDN18.2
high-expression group was mainly enriched in choline trans-
port, adenylyl cyclase-G-protein-coupled receptor signal reg-
ulation, and regulation of actomyosin structure organization
in biological processes (Fig. 4A). Cellular component analysis
highlighted dysregulation of the Golgi apparatus, membrane,
and endomembrane system, suggesting roles in secretory path-
way activation and cell polarity disruption (Fig. 4B). In terms
of molecular function, choline transmembrane transporter
activity, TAP binding, peptide antigen binding, T-cell receptor
binding, and chloride channel inhibitor activity were abnormal
(Fig. 4C). KEGG pathway analysis showed that endocytosis,
FcyR-mediated phagocytosis, choline metabolism in tumors,

and the pentose phosphate pathway jointly regulated metabolic
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Table 1. Clinicopathological features of GC according to CLDN18.2 status
Characteristic Total (n = 494) CLDN18-negative CLDN18-positive p-value
Age (yr) (median, 59 yr)
Mean + SD 58.54 + 9.66
<59 246 (49.8) 175 (71.1) 71 (28.9) 333
259 248 (50.2) 186 (75.0) 62 (25.0)
Sex
Male 380 (76.9) 272 (71.6) 108 (28.4) A7
Female 114 (23.1) 89 (78.1) 25 (21.9)
Gastric localization
Fundus 114 (23.1) 85 (74.6) 29 (25.4) .802
Body 113 (22.9) 80 (70.8) 33(29.2)
Antrum 267 (54.0) 196 (73.4) 71 (26.6)
pT
la-1b 79 (16.0) 67 (84.8) 12 (15.2) 046
2 64 (13.0) 49 (76.6) 15 (23.4)
3 75 (15.2) 51 (68.0) 24 (32.0)
4a-4b 276 (55.8) 194 (70.3) 82 (29.7)
pN
0 171 (34.6) 137 (80.1) 34(19.9) 013
1 63(12.8) 50 (79.4) 13 (20.6)
2 120 (24.3) 79 (65.8) 41 (34.2)
3a-3b 140 (28.3) 95 (67.9) 45(32.1)
TNM staging
I 110 (22.3) 90 (81.9) 20 (18.1) .003
Il 103 (20.9) 82 (79.6) 21 (20.4)
-1 281 (56.8) 189 (67.3) 92 (32.7)
Tumor grading
G1 42 (8.5) 33 (78.6) 9(21.4) .638
G2 273 (55.3) 196 (71.8) 77 (28.2)
G3 179 (36.2) 132 (73.7) 47 (26.3)
Lauren
Intestinal 157 (31.8) 125 (79.6) 32 (20.4) .077
Diffuse 202 (40.9) 140 (69.3) 62 (30.7)
Mixed 135 (27.3) 96 (71.1) 39 (28.9)

Values are presented as number (%).
GC, gastric cancer; CLDN18.2, claudin18.2; SD, standard deviation.

reprogramming, immune microenvironment dysregulation,
and pro-survival signaling, promoting the progression and me-
tastasis of GC (Fig. 4D).

DISCUSSION

CLDN18.2, a gastric system-specific tight junction protein, is
normally localized to differentiated epithelial cells, maintain-

ing mucosal barrier integrity via cell-cell adhesion. However,

https://doi.org/10.4132/jptm.2025.09.11

malignant transformation disrupts cell adhesion and polarity,
leading to aberrant CLDN18.2 surface exposure, which may
promote metastatic dissemination by compromising epithelial
cohesion [9]. In this study, we analyzed CLDN18.2 expression
in a high-incidence GC cohort, combining clinicopathological
correlations, survival data, and multi-omics profiling to explore
its role in tumor progression.

While our findings demonstrate that CLDN18.2 positivity
(26.9%, 133/494) was significantly associated with advanced
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Fig. 1. Immunohistochemical staining of claudin18.2 (CLDN18.2) (A-D) in a primary resected gastric adenocarcinoma specimen. (A) Cyto-
plasmic staining intensity was high (staining index [SI] 12). (B) Cytoplasmic staining intensity was medium (Sl 6). (C) Cytoplasmic staining
intensity was low (Sl 2). (D) Cytoplasmic staining of CLDN18.2 was negative (SI 0).
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Fig. 2. Overall survival time in patients with claudin18.2 (CLDN18.2)
expression, CLDN18.2 positive is defined as strong (2+/3+) mem-
brane staining >75% of tumor cells. Median follow-up: 34 months.
HR, hazard ratio.

TNM stage (p = .003) and shorter survival time (p = .018),
underscoring its role in aggressive disease biology in our co-
hort, it is important to acknowledge conflicting evidence in the
literature regarding its prognostic value. Recent meta-analyses,
including studies by Park et al. [21] and Ungureanu et al. [22],
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as well as individual studies of comparable scale and population
focus [23], have reported no significant association between
CLDN18.2 expression and survival outcomes in GC [21-23].
Notably, we found no association between CLDN18.2 and
molecular subtypes defined by EBER, HER2, MMRd, p53, or
TCGA classification, suggesting that its prognostic value may
transcend conventional molecular stratification in our dataset.
These findings align with prior studies reporting CLDN18.2 as
a stage-dependent biomarker [24]. While our cohort showed
no association between CLDN18.2 and age, gender, Lauren
classification, tumor grade, or tumor location, Kwak et al. [25]
observed a significant correlation between CLDN18.2-positive
GC and tumor location in the upper third of the stomach. This
difference, along with the prognostic discrepancies highlight-
ed above, may stem from variations in immunohistochemical
scoring protocols or regional epidemiological factors, empha-
sizing the need for standardized CLDN18.2 assessment criteria.

RNA sequencing revealed enriched genes regulating mem-
brane integrity (e.g., cell periphery and plasma membrane com-
ponents) in CLDN18.2-high tumors. This molecular signature
suggests compromised tight junction function, likely resulting

from malignant transformation that disrupts cellular polarity

https://doi.org/10.4132/jptm.2025.09.11
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Table 2. Immunohistochemical profiles according to CLDN18.2 status
Characteristic Total (n = 494) CLDN18-negative CLDN18-positive p-value
MMRd
Yes 31(6.3) 23 (74.2) 8(25.8) .885
No 463 (93.7) 338 (73.0) 125 (27.0)
HER2
Positive 80 (16.2) 53 (66.3) 27 (33.8) 133
Negative 414 (83.8) 308 (74.4) 106 (25.6)
p53
Altered 231 (46.8) 168 (72.8) 63 (27.2) .870
Wild type 263 (53.2) 193 (73.4) 70 (26.6)
EBER
Positive 10 (2.0) 5 (50.0) 5 (50.0) 193
Negative 484 (98.0) 356 (73.6) 128 (26.4)

Values are presented as number (%).

CLDN18.2, claudin18.2; MMRd, mismatch repair deficiency; HER2, human epidermal growth factor receptor 2; EBER, Epstein-Barr virus-encoded

RNA.

and exposes CLDN18.2 on the cell surface. Preclinical data
indicate that aberrant CLDN18.2 expression may contribute
to cancer progression, but its direct role in the epithelial-mes-
enchymal transition remains unconfirmed in clinical studies
[26]. Molecular function indicated that CLDN18.2 is linked
to steroid binding and inorganic anion transport, implicating
roles in lipid metabolism and ion homeostasis. Studies show
that CLDN18 loss disrupts transcellular chloride flux and ac-
tivates YAP/TEAD signaling, which can drive lipid and sterol
biosynthesis. The steroid-binding signal likely reflects indi-
rect effects via lipid-handling or steroid-responsive pathways
rather than direct ligand binding, suggesting that altered ion
transport and lipid metabolism are mechanistically coupled in
the CLDN18.2-deficient gastric epithelium [27-29]. Biological
processes such as organic hydroxy compound transport and
vitamin E metabolism further highlighted metabolic repro-
gramming toward redox balance and biosynthetic support [30].
KEGG pathway analysis revealed enrichment in phagosomes,
cytokine-cytokine receptor interaction, and chemical carcino-
genesis, suggesting that CLDN18.2 synergizes with immune
dysregulation and pro-carcinogenic signaling to drive cancer
progression [24,31].

Proteomic profiling corroborated the role of CLDN18.2 in
cytoskeletal remodeling and metabolic adaptation. Notably,
KEGG analysis identified aberrant endocytosis as a central
mechanism, wherein CLDN18.2 may enhance nutrient inter-
nalization to sustain proliferation in nutrient-scarce microen-

vironments [23,32,33]. Concurrent dysregulation of FcyR-me-
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diated phagocytosis and T-cell receptor binding implies that
CLDN18.2 fosters immune evasion by perturbing antigen
presentation or sequestering immunostimulatory molecules
[34]. These perturbations collectively establish an immunosup-
pressive niche conducive to metastatic outgrowth.

The relationship between CLDN18.2 and programmed
death-ligand 1 (PD-L1) expression in GC remains uncertain,
with studies reporting conflicting findings. Several groups have
found no significant correlation between these biomarkers,
suggesting they may independently inform treatment strate-
gies; for example, Ogawa et al. [35] reported that CLDN18.2
expression did not correlate with PD-L1, indicating that anti-
programmed death-1 (PD-1)/PD-L1 therapy might not benefit
CLDN18.2-positive patients. However, other studies suggest a
potential interaction, such as Wang et al. [36], who observed a
positive correlation between CLDN18.2 and PD-L1 expression,
and Tao et al. [23], whose GSEA revealed significant enrich-
ment of PD-1 signaling in CLDN18.2-high tumors. Clinically,
the presence or absence of this overlap is highly relevant, par-
ticularly with the recent approval of the anti-CLDN18.2 agent
zolbetuximab. Divergent reports regarding co-expression rates
underscore the necessity for further research to correlate ex-
pression patterns with therapeutic outcomes [37].

A limitation of this study is that the patients included in the
analysis are from a single institution and underwent a relatively
short follow-up period, which may introduce selection bias.
The small proteomic subset limits mechanistic generalizability,

warranting validation in larger cohorts.
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In this study, we demonstrate that elevated CLDN18.2 ex-
pression is significantly associated with TNM stage and OS
in GC patients from high-incidence regions. Integrated tran-
scriptomic and proteomic analyses revealed that CLDN18.2
drives progression via metabolic reprogramming, cytoskeletal
remodeling, and immune dysregulation, establishing it as a key
metastasis regulator and potential target for high-risk GC. The
prognostic value of CLDN18.2 is pronounced in environmen-
tally high-risk populations, with identified pathways (e.g., en-
docytosis, FcyR-mediated immune suppression) informing the
suitability of combination therapies targeting CLDN18.2 and

downstream effectors.

Supplementary Information
The Data Supplement is available with this article at https://doi.

org/10.4132/jptm.2025.09.11.

https://doi.org/10.4132/jptm.2025.09.11

Ethics Statement
Ethical approval for the use of tissue samples in this research

was granted by the Ethical Review Committee of Lanzhou
University Second Hospital (IRB No. 2021A-153), and written

informed consent was obtained from all participants.

Availability of Data and Material

The original contributions presented in the study are included
in the article; further inquiries can be directed to the corre-

sponding authors.

Code Availability
Not applicable.

ORCID

Hengquan Wu https://orcid.org/0009-0002-8680-4925

55


https://doi.org/10.4132/jptm.2025.09.11
https://doi.org/10.4132/jptm.2025.09.11

1l JPTM

Mei Li https://orcid.org/0009-0004-3331-8426
Gang Wang https://orcid.org/0009-0006-6673-368X
Peiqing Liao https://orcid.org/0009-0001-9788-6674
Peng Zhang https://orcid.org/0009-0007-6470-978X
Luxi Yang https://orcid.org/0000-0002-5242-7642
Yumin Li https://orcid.org/0000-0002-9267-1412
Tao Liu https://orcid.org/0000-0003-1573-6777
Wenting He https://orcid.org/0009-0008-4718-4114

Author Contributions

Conceptualization: WH, TL. Data curation: WH, ML, HW, PZ,
GW, LY, YL. Formal analysis: HW. Funding acquisition: WH,
TL. Investigation: WH, ML, HW, GW, PL. Methodology: WH,
TL. Project administration: WH, TL. Resources: WH, TL, ML.
Supervision: WH, TL. Validation: WH, ML, HW. Visualization:
HW. Writing—original draft: HW. Writing—review & editing:
TL, WH. Approval of final manuscript: all authors.

Conflicts of Interest
The authors declare that they have no potential conflicts of in-
terest.

Funding Statement

This work was supported by The Fundamental Research Funds
for The Science and Technology Program of Gansu Province
(No. 23JRRA1015); International science and technology co-
operation project of Gansu Provincial Science and Technology
Department (No. 2023YFWA0009).

REFERENCES

1. Bray E, Laversanne M, Sung H, et al. Global cancer statistics 2022:
GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA Cancer J Clin 2024; 74: 229-63.

2. Shi D, Yang Z, Cai Y, et al. Research advances in the molecular
classification of gastric cancer. Cell Oncol (Dordr) 2024; 47: 1523-
36.

3. Matsuoka T, Yashiro M. Molecular insight into gastric cancer in-
vasion: current status and future directions. Cancers (Basel) 2023;
16: 54.

4. Kahraman S, Yalcin S. Recent advances in systemic treatments for
HER-2 positive advanced gastric cancer. Onco Targets Ther 2021;
14: 4149-62.

5. Zhang M, Hu S, Min M, et al. Dissecting transcriptional hetero-

geneity in primary gastric adenocarcinoma by single cell RNA

56

10.

11.

12.

13.

14.

15.

16.

17.

CLDN18.2 in gastric cancer

sequencing. Gut 2021; 70: 464-75.

. Ye Y, Yang W, Ruan X, et al. Metabolism-associated molecular

classification of gastric adenocarcinoma. Front Oncol 2022; 12:
1024985.

. Cancer Genome Atlas Research Network. Comprehensive mo-

lecular characterization of gastric adenocarcinoma. Nature 2014;
513:202-9.

. Sahin U, Koslowski M, Dhaene K, et al. Claudin-18 splice variant

2 is a pan-cancer target suitable for therapeutic antibody develop-
ment. Clin Cancer Res 2008; 14: 7624-34.

. Shitara K, Lordick E Bang Y], et al. Zolbetuximab plus mFOLF-

OX6 in patients with CLDN18.2-positive, HER2-negative, un-
treated, locally advanced unresectable or metastatic gastric or
gastro-oesophageal junction adenocarcinoma (SPOTLIGHT):
a multicentre, randomised, double-blind, phase 3 trial. Lancet
2023;401: 1655-68.

Sahin U, Schuler M, Richly H, et al. A phase I dose-escalation
study of IMAB362 (Zolbetuximab) in patients with advanced
gastric and gastro-oesophageal junction cancer. Eur J Cancer
2018; 100: 17-26.

Zhou K, Strickler JH, Chen H. Targeting claudin-18.2 for cancer
therapy: updates from 2024 ASCO annual meeting. ] Hematol
Oncol 2024; 17: 73.

Qi C, Gong J, Li ], et al. Claudin18.2-specific CAR T cells in gas-
trointestinal cancers: phase 1 trial interim results. Nat Med 2022;
28:1189-98.

Qi G, Liu C, Gong J, et al. Claudin18.2-specific CAR T cells in
gastrointestinal cancers: phase 1 trial final results. Nat Med 2024;
30: 2224-34.

Shah MA, Shitara K, Ajani JA, et al. Zolbetuximab plus CAPOX
in CLDN18.2-positive gastric or gastroesophageal junction ad-
enocarcinoma: the randomized, phase 3 GLOW trial. Nat Med
2023;29:2133-41.

Ruan DY, Liu FR, Wei XL, et al. Claudin 18.2-targeting anti-
body-drug conjugate CMG901 in patients with advanced gastric
or gastro-oesophageal junction cancer (KYM901): a multicentre,
open-label, single-arm, phase 1 trial. Lancet Oncol 2025; 26: 227-
38.

Huang B, Liu J, Ding E Li Y. Epidemiology, risk areas and macro
determinants of gastric cancer: a study based on geospatial analy-
sis. Int ] Health Geogr 2023; 22: 32.

Klempner SJ, Lee KW, Shitara K, et al. ILUSTRO: Phase II multi-
cohort trial of zolbetuximab in patients with advanced or meta-
static Claudin 18.2-positive gastric or gastroesophageal junction
adenocarcinoma. Clin Cancer Res 2023; 29: 3882-91.

https://doi.org/10.4132/jptm.2025.09.11


https://doi.org/10.3322/caac.21834
https://doi.org/10.3322/caac.21834
https://doi.org/10.3322/caac.21834
https://doi.org/10.1007/s13402-024-00951-9
https://doi.org/10.1007/s13402-024-00951-9
https://doi.org/10.1007/s13402-024-00951-9
https://doi.org/10.3390/cancers16010054
https://doi.org/10.3390/cancers16010054
https://doi.org/10.3390/cancers16010054
https://doi.org/10.2147/ott.s315252
https://doi.org/10.2147/ott.s315252
https://doi.org/10.2147/ott.s315252
https://doi.org/10.1136/gutjnl-2019-320368
https://doi.org/10.1136/gutjnl-2019-320368
https://doi.org/10.1136/gutjnl-2019-320368
https://doi.org/10.3389/fonc.2022.1024985
https://doi.org/10.3389/fonc.2022.1024985
https://doi.org/10.3389/fonc.2022.1024985
https://doi.org/10.1038/nature13480
https://doi.org/10.1038/nature13480
https://doi.org/10.1038/nature13480
https://doi.org/10.1158/1078-0432.ccr-08-1547
https://doi.org/10.1158/1078-0432.ccr-08-1547
https://doi.org/10.1158/1078-0432.ccr-08-1547
https://doi.org/10.1016/s0140-6736(23)00620-7
https://doi.org/10.1016/s0140-6736(23)00620-7
https://doi.org/10.1016/s0140-6736(23)00620-7
https://doi.org/10.1016/s0140-6736(23)00620-7
https://doi.org/10.1016/s0140-6736(23)00620-7
https://doi.org/10.1016/s0140-6736(23)00620-7
https://doi.org/10.1016/j.ejca.2018.05.007
https://doi.org/10.1016/j.ejca.2018.05.007
https://doi.org/10.1016/j.ejca.2018.05.007
https://doi.org/10.1016/j.ejca.2018.05.007
https://doi.org/10.1186/s13045-024-01595-w
https://doi.org/10.1186/s13045-024-01595-w
https://doi.org/10.1186/s13045-024-01595-w
https://doi.org/10.1038/s41591-022-01800-8
https://doi.org/10.1038/s41591-022-01800-8
https://doi.org/10.1038/s41591-022-01800-8
https://doi.org/10.1038/s41591-024-03037-z
https://doi.org/10.1038/s41591-024-03037-z
https://doi.org/10.1038/s41591-024-03037-z
https://doi.org/10.1038/s41591-023-02465-7
https://doi.org/10.1038/s41591-023-02465-7
https://doi.org/10.1038/s41591-023-02465-7
https://doi.org/10.1038/s41591-023-02465-7
https://doi.org/10.1016/s1470-2045(24)00636-3
https://doi.org/10.1016/s1470-2045(24)00636-3
https://doi.org/10.1016/s1470-2045(24)00636-3
https://doi.org/10.1016/s1470-2045(24)00636-3
https://doi.org/10.1016/s1470-2045(24)00636-3
https://doi.org/10.1186/s12942-023-00356-1
https://doi.org/10.1186/s12942-023-00356-1
https://doi.org/10.1186/s12942-023-00356-1
https://doi.org/10.1158/1078-0432.ccr-23-0204
https://doi.org/10.1158/1078-0432.ccr-23-0204
https://doi.org/10.1158/1078-0432.ccr-23-0204
https://doi.org/10.1158/1078-0432.ccr-23-0204

1l JPTM

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

de la Fouchardiere C, Cammarota A, Svrcek M, et al. How do I
treat AIMMR/MSI gastro-oesophageal adenocarcinoma in 2025?
A position paper from the EORTC-GITCG gastro-esophageal
task force. Cancer Treat Rev 2025; 134: 102890.

Coati I, Lotz G, Fanelli GN, et al. Claudin-18 expression in oe-
sophagogastric adenocarcinomas: a tissue microarray study of
523 molecularly profiled cases. Br ] Cancer 2019; 121: 257-63.
Ajani JA, D'Amico TA, Bentrem DJ, et al. Gastric cancer, version
2.2025, NCCN clinical practice guidelines in oncology. ] Natl
Compr Canc Netw 2025; 23: 169-91.

Park G, Park SJ, Kim Y. Clinicopathological significance and
prognostic values of claudin18.2 expression in solid tumors: a sys-
tematic review and meta-analysis. Front Oncol 2024; 14: 1453906.
Ungureanu BS, Lungulescu CV; Pirici D, et al. Clinicopathologic
relevance of Claudin 18.2 expression in gastric cancer: a me-
ta-analysis. Front Oncol 2021; 11: 643872.

Tao D, Guan B, Li Z, Jiao M, Zhou C, Li H. Correlation of Clau-
din18.2 expression with clinicopathological characteristics and
prognosis in gastric cancer. Pathol Res Pract 2023; 248: 154699.
Liu S, Zhang Z, Jiang L, Zhang M, Zhang C, Shen L. Claudin-18.2
mediated interaction of gastric cancer cells and cancer-associated
fibroblasts drives tumor progression. Cell Commun Signal 2024;
22:27.

Kwak Y, Kim TY, Nam SK, et al. Clinicopathologic and molecular
characterization of stages II-IV gastric cancer with Claudin 18.2
expression. Oncologist 2025; 30: oyae238.

Kubota Y, Shitara K. Zolbetuximab for claudin18.2-positive gas-
tric or gastroesophageal junction cancer. Ther Adv Med Oncol
2024; 16: 17588359231217967.

Gaitan-Penas H, Apaja PM, Arnedo T, et al. Leukoencephalopa-
thy-causing CLCN2 mutations are associated with impaired CI(-)

https://doi.org/10.4132/jptm.2025.09.11

28.

29.

30.

3L

32.

33.

34.

35.

36.

37.

Wu H et al.

channel function and trafficking. ] Physiol 2017; 595: 6993-7008.
Caron TJ, Scott KE, Sinha N, et al. Claudin-18 loss alters transcel-
lular chloride flux but not tight junction ion selectivity in gastric
epithelial cells. Cell Mol Gastroenterol Hepatol 2021; 11: 783-801.
Hagen SJ, Ang LH, Zheng Y, et al. Loss of tight junction protein
Claudin 18 promotes progressive neoplasia development in
mouse stomach. Gastroenterology 2018; 155: 1852-67.
Chiaramonte R, Sauro G, Giannandrea D, Limonta P, Casati L.
Molecular insights in the anticancer activity of natural tocot-
rienols: targeting mitochondrial metabolism and cellular redox
homeostasis. Antioxidants (Basel) 2025; 14: 115.

Wu ], Lu J, Chen Q, Chen H, Zheng Y, Cheng M. Pan-cancer
analysis of CLDN18.2 shed new insights on the targeted therapy
of upper gastrointestinal tract cancers. Front Pharmacol 2024; 15:
1494131.

Banushi B, Joseph SR, Lum B, Lee JJ, Simpson E Endocytosis in
cancer and cancer therapy. Nat Rev Cancer 2023; 23: 450-73.
Basagiannis D, Zografou S, Murphy C, et al. VEGF induces sig-
nalling and angiogenesis by directing VEGFR2 internalisation
through macropinocytosis. J Cell Sci 2016; 129: 4091-104.

Wu B, Wang Q, Li B, Jiang M. LAMTORI1 degrades MHC-II via
the endocytic in hepatocellular carcinoma. Carcinogenesis 2022;
43:1059-70.

Ogawa H, Abe H, Yagi K, Seto Y, Ushiku T. Claudin-18 status and
its correlation with HER2 and PD-L1 expression in gastric cancer
with peritoneal dissemination. Gastric Cancer 2024; 27: 802-10.
Wang C, Wang Y, Chen J, et al. CLDN18.2 expression and its im-
pact on prognosis and the immune microenvironment in gastric
cancer. BMC Gastroenterol 2023; 23: 283.

Cho Y, Ahn S, Kim KM. PD-L1 as a biomarker in gastric cancer
immunotherapy. ] Gastric Cancer 2025; 25: 177-91.

57


https://doi.org/10.1016/j.ctrv.2025.102890
https://doi.org/10.1016/j.ctrv.2025.102890
https://doi.org/10.1016/j.ctrv.2025.102890
https://doi.org/10.1016/j.ctrv.2025.102890
https://doi.org/10.1038/s41416-019-0508-4
https://doi.org/10.1038/s41416-019-0508-4
https://doi.org/10.1038/s41416-019-0508-4
https://doi.org/10.6004/jnccn.2025.0022
https://doi.org/10.6004/jnccn.2025.0022
https://doi.org/10.6004/jnccn.2025.0022
https://doi.org/10.3389/fonc.2024.1453906
https://doi.org/10.3389/fonc.2024.1453906
https://doi.org/10.3389/fonc.2024.1453906
https://doi.org/10.3389/fonc.2021.643872
https://doi.org/10.3389/fonc.2021.643872
https://doi.org/10.3389/fonc.2021.643872
https://doi.org/10.1016/j.prp.2023.154699
https://doi.org/10.1016/j.prp.2023.154699
https://doi.org/10.1016/j.prp.2023.154699
https://doi.org/10.1186/s12964-023-01406-8
https://doi.org/10.1186/s12964-023-01406-8
https://doi.org/10.1186/s12964-023-01406-8
https://doi.org/10.1186/s12964-023-01406-8
https://doi.org/10.1093/oncolo/oyae238
https://doi.org/10.1093/oncolo/oyae238
https://doi.org/10.1093/oncolo/oyae238
https://doi.org/10.1177/17588359231217967
https://doi.org/10.1177/17588359231217967
https://doi.org/10.1177/17588359231217967
https://doi.org/10.1113/jp275087
https://doi.org/10.1113/jp275087
https://doi.org/10.1113/jp275087
https://doi.org/10.1016/j.jcmgh.2020.10.005
https://doi.org/10.1016/j.jcmgh.2020.10.005
https://doi.org/10.1016/j.jcmgh.2020.10.005
https://doi.org/10.1053/j.gastro.2018.08.041
https://doi.org/10.1053/j.gastro.2018.08.041
https://doi.org/10.1053/j.gastro.2018.08.041
https://doi.org/10.3390/antiox14010115
https://doi.org/10.3390/antiox14010115
https://doi.org/10.3390/antiox14010115
https://doi.org/10.3390/antiox14010115
https://doi.org/10.3389/fphar.2024.1494131
https://doi.org/10.3389/fphar.2024.1494131
https://doi.org/10.3389/fphar.2024.1494131
https://doi.org/10.3389/fphar.2024.1494131
https://doi.org/10.1038/s41568-023-00574-6
https://doi.org/10.1038/s41568-023-00574-6
https://doi.org/10.1242/jcs.188219
https://doi.org/10.1242/jcs.188219
https://doi.org/10.1242/jcs.188219
https://doi.org/10.1093/carcin/bgac075
https://doi.org/10.1093/carcin/bgac075
https://doi.org/10.1093/carcin/bgac075
https://doi.org/10.1007/s10120-024-01505-6
https://doi.org/10.1007/s10120-024-01505-6
https://doi.org/10.1007/s10120-024-01505-6
https://doi.org/10.1186/s12876-023-02924-y
https://doi.org/10.1186/s12876-023-02924-y
https://doi.org/10.1186/s12876-023-02924-y
https://doi.org/10.5230/jgc.2025.25.e4
https://doi.org/10.5230/jgc.2025.25.e4

I I J PTM ORIGINAL ARTICLE

pISSN 2383-7837 - elSSN 2383-7845 Journal of Pathology and Translational Medicine 2026; 60: 58-68
https://doi.org/10.4132/jptm.2025.09.12

The significance of papillary architecture in the follow-up
biopsies of patients with progestin-treated atypical
endometrial hyperplasia

Wangpan J. Shi, Oluwole Fadare

Department of Pathology, University of California San Diego, San Diego, CA, USA

Graphical abstract

. [ ; . S \ Morphological
Study Design AH/EIN Diagnosis Progestin Treatment >/ Serial Biopsies > Evaluation

Histological Features Risk Stratification

Papillae only

B Papilae+Glandular Crowding
Neither

M Glandular Crowding only

Morphologic
Categories of Post-
Treatment Samples

70.0%

- 60.0% 64.0%
Papillae N 0
\J‘ p <LUER Glandular crowding Both together 20.0%
(with fibrovascular core).
y 40.0% 44.4%
. " ; 39.7%
Morphologic Features Papillary structures qnly Glandulércrowdlng only Both papllla.e and glandular 20.0% 39.7%
K No glandular crowding No papillary structures crowding present
200 24.0%

’ No crowding; limited Highest likelihood of Possible persistence of 10.0%
Caption predictive value residual disease AH/EIN in some cases o

0.0%

’tONCLUSlON In post-treatment samples of progestin-treated AH/EIN, the presence of papillary architecture was not demonstrably associated with
e’ study outcomes independent of gland crowding, although the concurrent presence of both features may be significantly predictive.

X
."

Shi WP et al. Journal of pathology and ional medicir




il JPTM

pISSN 2383-7837 - eISSN 2383-7845

ORIGINAL ARTICLE

Journal of Pathology and Translational Medicine 2026; 60: 58-68
https://doi.org/10.4132/jptm.2025.09.12

The significance of papillary architecture in the follow-up
biopsies of patients with progestin-treated atypical
endometrial hyperplasia

Wangpan J. Shi, Oluwole Fadare

Department of Pathology, University of California San Diego, San Diego, CA, USA

Background: Follow-up biopsies in patients with progestin-treated atypical endometrial hyperplasia/endometrioid intraepithelial neoplasia
(AH/EIN) may show papillary structures, the significance of which is unclear. Methods: The authors reviewed 253 serial specimens of 84 consec-
utive patients diagnosed with AH/EIN, inclusive of each patient's pre-progestin treatment sample and all post-treatment specimens. We as-
sessed the predictive relationship between papillary architecture in a post-treatment biopsy and two study outcomes: AH/EIN or carcinoma in at
least one sample subsequent to the one in which papillae were identified, and/or the last specimen received for that patient. Results: Papillae
were identified in only 51.5% of pre-treatment samples but were present in at least one subsequent post-treatment sample for all patients.
Post-treatment samples that exhibited papillae and no glandular crowding were associated with AH/EIN in at least one subsequent specimen in
39.7% (29/73) of cases, compared to 24.0% (6/25) in samples with neither papillae nor glandular crowding (p = .227) and 64.0% (16/25) in sam-
ples with concurrent gland crowding and papillae (p = .048). Univariate logistic regression analyses showed that the presence of papillae was
not associated with study outcomes (odds ratio [OR], 0.99; 95% confidence interval [CI], 0.49 to 1.99; p = .985), as compared with gland crowd-
ing (OR, 1.54;95% Cl, 1.04 to 2.27; p = .031), or concurrent papillae and gland crowding (OR, 2.36; 95% Cl, 1.01 to 5.52; p = .048). Conclusions: In
post-treatment samples of progestin-treated AH/EIN, the presence of papillary architecture was not demonstrably associated with study out-
comes independent of gland crowding, although the concurrent presence of both features may be significantly predictive.

Keywords: Endometrium; Progestins; Atypical endometrial hyperplasia

INTRODUCTION

Atypical endometrial hyperplasia/endometrioid intraepithelial
neoplasia (AH/EIN) is generally considered to be the immedi-
ate precursor lesion to endometrial endometrioid carcinoma,
one that confers a substantial risk of concurrent carcinoma or if
left untreated, progression [1-7]. Surgical resection of the uter-
us is widely recognized as definitive treatment for AH/EIN [8].

However, for women who desire fertility, are poor surgical can-

didates due to medical comorbidities, or who decline surgical
intervention for other reasons, progestin therapies have gained
widespread use in recent decades [8-10]. Progestin-based
therapies may include medroxyprogesterone acetate, depot
medroxyprogesterone, micronized vaginal progesterone, mege-
strol acetate, and a levonorgestrel intrauterine system, among
others [3,9,10]. Patients on progestin-based therapies require
close surveillance and follow-up biopsies to assess for efficacy

of treatments, as inferred from the persistence, regression or
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progression of disease [1,9-11]. The pathologist’s determination
is arguably central to this process, which highlights the impor-
tance of accuracy, reproducibility, and consistency of reporting
in the evaluation of those follow-up biopsies [11-14]. However,
although the diagnostic criteria for AH/EIN are relatively well
established, progestin treatments may induce cytoarchitectural
changes therein that render those derangements more difficult
to recognize, criteria more challenging to apply, and that overall
may engender significant uncertainty about the presence or
absence of residual disease in a given sample [11,12,15,16]. One
particular architectural alteration that may be encountered in
the follow-up endometrial samples of a patient on progestin
treatment is papillary change, especially when devoid of con-
current glandular crowding. The significance of these struc-
tures, and whether they truly denote residual hyperplasia, has
never been fully defined. This study aims to comprehensively
characterize the significance of papillary structures in this set-

ting.

Shi W] & Fadare O

MATERIALS AND METHODS

Case selection
The laboratory information system at an academic medical

center was queried for all diagnosed cases of AH/EIN during
a 10-year period. From an initial dataset, we excluded cases in
which the diagnosis of AH/EIN was not made in a sampling
specimen, duplications, patients with no follow-up samples
subsequent to the index biopsy, patients with index diagnoses
of non-atypical hyperplasia, and patients with a diagnosis of
AH/EIN concurrent with carcinoma. Various subsidiary anal-
yses called for analysis-specific exclusions, as detailed in Fig.
1. For this report, a “sample” refers to tissue from an endome-
trial biopsy or curettage, whereas “specimen” refers to tissue
from an endometrial biopsy, endometrial curettage, or uterus
resection. The sample on which the original diagnosis of AH/
EIN was rendered is the “index” or “pre-treatment” sample,
whereas samples obtained on follow-up (i.e., after the initiation
of treatment) are referred to as “post-treatment” or “follow-up”

samples.

253 Samples from 84 patients

Excluded patients in the analyses below:

1. No stromal pseudodecidual response in all the
follow-up samples (n = 9)

2. Presence of pseudodecidual response in the
index biopsy at our institution (n = 8)

3. Immediate hysterectomy following AH/EIN

diagnosis (n = 34) (n=32)

(n=4)

Excluded samples in the analysis below:
1. Index samples® (n = 33)
2. Samples without subsequent follow-up
specimens” (n = 18)
3. Samples with immediate hysterectomy
following AH/EIN diagnosis (n = 34)
4. Samples without stromal treatment response

5. Samples without definite endometrial tissue

Excluded samples in the analysis below:
1. Index samples® (n = 33)
2. Samples without subsequent follow-up
specimens’ (n = 18)
3. Samples with immediate hysterectomy
following AH/EIN diagnosis (n = 34)

A4

Analyses conducted after exclusion:

1. Papillary architecture in pre-treatment
samples and samples with progestin
treatment (n = 33)

2. Subgroup analysis in post-treatment samples
(n=233)[Table 1]

3. Significance of persistent papillary
architecture (n = 33)

Analysis conducted after exclusion:
Subgroup analysis in post-treatment samples
(n=132)

[Table 1]

Analysis conducted after exclusion:
Subgroup analysis in all post-treatment samples
irrespective of treatment response (n = 168)
[Table 4]

Fig. 1. Analysis-specific exclusion diagram based on patients and samples. AH/EIN, atypical endometrial hyperplasia/endometrioid intraepi-
thelial neoplasia. *Pretreatment samples; *Significance of papillae cannot be determined given the absence of follow-up specimens.

https://doi.org/10.4132/jptm.2025.09.12
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Morphologic review

Slides for all samples (mean, 3.0 + 2.5 slides/patient) were re-
trieved and reviewed jointly by the authors, inclusive of the
index and all follow-up samples, with the aim of identifying
the presence of papillary architecture of any type, describing

their morphologic spectrum, and any concurrent pathological

Papillary pattern in endometrial biopsy

processes that may be present. For every case, we documented
the presence of papillary structures and estimated the pro-
portion of the specimen that they represented. A papillary
structure was defined as a round, oval or filigree structure, at
least 75% covered by epithelium, and harboring a stromal or
fibrovascular core (Fig. 2). Large bulbous, polypoid structures

Fig. 2. Morphologic spectrum of papillae with morphologic variations (A-H).

60

https://doi.org/10.4132/jptm.2025.09.12



1l JPTM

with prominently pseudodecidualized stroma were not in-
cluded, given that it is well recognized that such structures are
common endometrial alterations associated with exogenous
progestins in non-hyperplastic endometrium (Fig. 3) [17,18].
Additionally, we documented for each sample the presence
of papillae branching as a surrogate indicator of architectural
complexity, with subcategorization to no branching, simple (one
level) branching off a central stalk irrespective of the number
of such branches, and complex (>two level) branching (i.e. the
presence in the sample of at least one central stalk that gives
rise to a primary branch, from which a secondary and possibly
tertiary branch originate). We also evaluated other morpho-
logic features that are relevant to the diagnoses of AH/EIN,
including glandular crowding, cytologic demarcation/atypia,
intraglandular architectural complexity, squamous morules,
metaplastic changes, cystic structures (presence, whether they
are crowded, and whether they are lined by atrophic-appearing
or non-atrophic appearing epithelium), and pseudodecidual

stromal change.

Follow-up and analytic outcomes

The central study questions were (1) whether the presence of
papillary architecture in any sample was significantly associated
with an increased likelihood of residual AH/EIN or carcinoma
in subsequent specimens for that patient; (2) whether papillae

characteristics: complexity of papillae, volume of papillae were

T

Fig. 3. Large bulbous, polypoid structures with prominently pseu-
dodecidualized stroma were not classified as displaying papillary
architecture for the purposes of this study, given that it is well rec-
ognized that such structures are common endometrial alterations
associated with exogenous progestins in non-hyperplastic endo-
metrium.
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similarly associated with an increased likelihood of residual
AH/EIN or carcinoma in subsequent specimens for that pa-
tient. Accordingly, papillary architecture was not used in our
analytic definition of AH/EIN. Rather, AH/EIN in post-treat-
ment samples was defined primarily by criteria outlined in the
5th edition of the World Health Organization Classification, i.e.,
cytologically-demarcated glandular confluence/crowding (i.e.,
area of glands exceeds the stroma) [19]. We utilized two out-
comes to assess for the significance of papillary architecture in
post-treatment specimens. Outcome-1 was defined by the pres-
ence of AH/EIN or carcinoma in at least one sample subsequent
to the sample in which the papillary structures were identified.
Outcome-2 was defined by the presence of AH/EIN or carcino-
ma in the last specimen that was received for that patient. The
dualistic outcomes facilitated a more robust assessment of any
AH/EIN or carcinoma that were subsequent to the identifica-
tion of papillary structures in a post-treatment sample, inclu-
sive of those from patients that went to hysterectomy after the
sample in which papillae were identified, as well as those from
patients that continued to receive follow-up samplings and that

never underwent a resection.

Statistics

SPSS ver. 29.0.2.0 software (IBM Corp., Armonk, NY, USA)
was used for statistical analyses. Categorical and continuous
variables were assessed using Chi-square tests and independent
T-tests, respectively. For analysis that included small numbers,
the Fisher exact test was used. A univariate logistic regression
analysis was conducted to further evaluate any association be-
tween papillae, gland crowding, and the concurrent presence of
both with study outcomes. p < .05 was considered statistically

significant in all analyses.

RESULTS

General description of the cohort

In total, we studied 253 specimens from 84 patients with a di-
agnosis of AH/EIN in a sampling specimen. The average age
of these patients was 52.4 years (+ 14.7). Thirty-four of the 84
patients (40.5%) underwent a hysterectomy immediately after
their index biopsies, whereas the remaining 50 (59.5%) were
treated with various oral and intrauterine progestins, followed
by follow-up biopsies. Among the latter group, 14.3% ultimately

underwent a hysterectomy.
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Papillary architecture in pre-treatment samples and
samples with progestin treatment

Among the 33 index endometrial samples, 17 (51.5%) had at
least focal papillary architecture. The average percentage of
index samples displaying papillary architecture was 11.2% (£
12.1) when present. Papillary architecture was present in at
least one post-treatment sample of every patient irrespective of
the presence or absence of such architecture in their pre-treat-
ment samples. Group analysis of the 33 patients showed that as
a group, papillary architecture was observed more frequently in
post-treatment samples than in pretreatment samples (89.2%
vs. 51.5%, p =.001). Furthermore, the average percentage of the
sample comprised of papillae was substantially higher in the
post-treatment than in the pretreatment samples (23.8 + 19.0
vs. 11.2 £ 12.1, p =.001).

Subgroup analysis in post-treatment samples

In this subgroup analysis, we sought to determine the signifi-
cance of papillary architecture (separate from gland crowding)
in post-treatment samples by evaluating their association with
AH/EIN or carcinoma in at least one subsequent specimen.
Accordingly, in addition to the sample in which the papillae
were identified, the index/pretreatment samples and the last bi-
opsy sample for each patient were excluded as the former were
irrelevant and the latter constituted an analytic end point for
patients that never underwent a resection. The post-treatment
samples were categorized into four groups in Table 1. Briefly,
the percentage of samples with AH/EIN or carcinoma in at
least one sample subsequent to the one in which papillae were
initially identified, were 39.7%, 64.0%, 24.0%, and 44.4% re-
spectively for group 1 (papillae present, gland crowding absent),
group 2 (papillae and gland crowding both present), group 3
(gland crowding and papillae were both absent) and group 4
(gland crowding present, papillae absent). When the 4 groups

Papillary pattern in endometrial biopsy

were compared to each other regarding the frequency of out-
come-1 (i.e. AH/EIN or carcinoma in at least one subsequent
sample), the group 2 versus group 3 comparison showed a sta-
tistically significant difference (64.0% vs. 24.0% respectively; p
=.010); Concurrent gland crowding and papillae (group 2) was
associated with a significantly higher rate of outcome results
compared to papillae alone (group 1) (64.0% vs. 39.7%, p =
.040). Also notable was the absence of any significant difference
between group 1 and group 3 regarding the frequency of the
study outcomes. Results from a univariate logistic regression
analysis showed that the presence of papillary architecture was
not significantly associated with study outcomes (odds ratio
[OR], 0.99; 95% confidence interval [CI], 0.49 to 1.99; p =.985),
in contrast with glandular crowding (OR, 1.54; 95% CI, 1.04
to 2.27; p = .031), and the concurrent presence of papillae and
glandular crowding (OR, 2.36; 95% CI, 1.01 to 5.52; p = .048).
In a subsidiary analysis in which the cohort were grouped
based only on the first post-treatment sample, concurrent gland
crowding and papillae (group 2) was associated with a sig-
nificantly higher rate of outcome results compared to papillae
alone (group 1) (91.6% vs. 42.8%, p =.009) (Table 2).

Analysis of post-treatment samples from group 1 pa-
tients

Group 1 cases (papillary architecture and no gland crowding
in a post-treatment sample) were more expansively assessed,
since their significance constituted a central study question.
There were 73 post-treatment samples from 21 patients in this
group. We assessed the association of various papillae features
(percentage of sample with papillary architecture, complexity of
papillae) with two outcome measures (outcome-1, outcome-2)
compared to controls (absence of AH/EIN or carcinoma in any
follow-up specimen). Findings are detailed in Table 3, and show

that (1) the proportion of the sample with papillary architecture

Table 1. Categorization of follow-up samples based on papillary architecture and/or gland crowding, and their association with the finding of

AH or carcinoma in at least one subsequent specimen

Study groupings of selected post-treatment samples

Samples with residual atypical hyperplasia or
carcinoma in at least one subsequent specimen

Group 1: Follow up biopsies with papillary architecture and no gland crowding (n = 73)
Group 2: Follow up biopsies with concurrent papillary architecture and gland crowding (n = 25)
Group 3: Follow up biopsies with no papillary architecture or gland crowding (n = 25)

Group 4: Follow up biopsies with gland crowding and no papillary architecture (n = 9)

29/73 (39.7)
16/25 (64.0)
6/25 (24.0)
49 (44.4)

Values in parentheses indicate percentages.

Group 1vs. 2 (p =.040); group 1 vs. 3 (p =.227); group 2 vs. 3 (p =.010); group 1 vs. 4 (p > .99); group 2 vs. 4 (p = .435); group 3 vs. 4 (p = .395).

AH, atypical endometrial hyperplasia.
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Table 2. Categorization of patients based on papillary architecture and/or gland crowding on the first post-treatment sample, and their asso-
ciation with the finding of AH or carcinoma in at least one subsequent specimen

Study groupings of patients based on the first post-treatment sample

Samples with residual atypical hyperplasia or carcinoma
in at least one subsequent specimen

Group 1: Follow up biopsies with papillary architecture and no gland crowding (n = 21)
Group 2: Follow up biopsies with concurrent papillary architecture and gland crowding

(n=12)

Group 3: Follow up biopsies with no papillary architecture or gland crowding (n = 10)
Group 4: Follow up biopsies with gland crowding and no papillary architecture (n = 7)

9/21 (42.8)
11/12 (91.6)

6/10 (60.0)
2[7 (28.5)

Values in parentheses indicate percentages.

Group 1vs. 2 (p =.009); group 1vs. 3 (p = .458); group 2 vs. 3 (p = .135); group 1 vs. 4 (p = .668); group 2 vs. 4 (p = .010); group 3 vs. 4 (p = .335).

AH, atypical endometrial hyperplasia.

Table 3. Analysis of the significance of papillae in group 1 post-treatment specimens

Residual AH/carcinoma

(Group 1, “primary sample") Post- in the last specimen,

Residual AH/carcinoma in
any specimen subsequent to in any specimen subsequent

No residual AH or carcinoma

Erfc?flﬂi?ﬁia?nﬂeﬁovgf:nﬁagmng OL(‘:CSW;;Z primary Sinm£|€2.8<3utcome-1 to the ?rr]ir:i%sample p-value

Mean percentage of papillary 3751204 309+ 189 19.8 +17.2 .003
architecture in the sample

Papillae with any branching present 8/13 (61.5) 20/28 (71.4) 29/44 (65.9) 799

Surface micropapillae present 3/13 (23.1) 5/28 (17.8) 4/44 (9.1) 350

Surface micropapillae with any branching 2/13 (15.4) 3/28 (10.7) 3/44 (6.8) 623

Complex papillae (>1 branching) present 0/13 (0) 4128 (14.3) 2/44 (4.5) 162

Values are presented as mean + standard deviation and values in parentheses indicate percentages. AH, atypical endometrial hyperplasia.

was significantly higher than controls for those group 1 patients
that were found to have AH/EIN or carcinoma in a subsequent
sample; (2) neither the presence nor degree of papillae branch-
ing significantly distinguished cases that were ultimately associ-

ated with outcome-1 and 2 from those that were not.

Significance of papillary architecture “persistence”

For current analytic purposes, persistence of papillary architec-
ture was defined as the scenario wherein at least two post-treat-
ment biopsies showed papillary architecture in the absence of
concurrent glandular crowding. Among the 33 patients who
had index biopsies with post-treatment samples, 20/33 (60.7%)
had more than two follow-up samples taken (not inclusive of
the final sample or resection specimen). Among these patients,
16/20 (80.0%) had persistent papillary architecture, 11/33
(33.3%) had one follow-up sample with papillary architecture,
and 6/33 (18.2%) had follow-up samples without persistent
papillary architecture. The frequency of outcomes-1 or -2 in
these three groups were 43.7%, 36.4%, and 33.3%, respectively
(p > .99). A representative case in which there was persistent
papillary architecture in nine post-treatment samples over time

is shown in Fig. 4.

https://doi.org/10.4132/jptm.2025.09.12

Microscopic findings in post-treatment samples asso-

ciated with residual AH/EIN or carcinoma
Table 4 outlines findings from a subsidiary analysis that was de-

signed to identify morphologic findings that were significantly
more prevalent in the group of samples for which there was a
diagnosis of AH/EIN or carcinoma in a subsequent specimen
(i.e., outcomes-1 and -2) irrespective of progestin-treatment
response. Sixty-seven post-treatment samples for which there
was a subsequent diagnosis of AH/EIN or carcinoma (in a
post-treatment biopsy or resection specimen, study group) were
compared with 101 post-treatment samples for which there
were no subsequent diagnoses of AH/EIN or carcinoma (control
group), regarding a variety of morphologic findings. Features
that were significantly more prevalent in the study group in-
clude glandular crowding, glandular crowding concurrent with
papillae, and cytologic demarcation. Table 4 also shows that
there was no linear association between the percentage of the
sample with papillary architecture and the likelihood of residual
AH/EIN or carcinoma in subsequent specimens. Briefly, papil-
lae in >10% and >20% (but not >30% or >40%) of the sample
were more significantly more frequent in the study group than

the control group. However, even at the >10% or >20% levels,
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Index sample

Papillary pattern in endometrial biopsy

0 +7 months +17 months +23 months +31 months

Fig. 4. A representative patient whose follow-up biopsies (Bx) showed persistence of papillary architecture of various types over an extend-

ed period.

the addition of concurrent glandular crowding eliminates the
statistical significance of the difference between the study and
control groups. The presence of squamous morules, crowded
cysts, mucinous metaplasia, degree of papillary branching, or
surface micropapillae showed no statistically significant differ-

ence in frequency between the two groups.
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DISCUSSION

A wide variety of cytoarchitectural alterations may be observed
in samples of progestin-treated AH/EIN, including a relative
decrease in gland-to-stroma ratio, nuclear size, mitotic index,

and nucleus-to-cytoplasm ratio, “acquisition” of various meta-
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Table 4. Analysis of all post-treatment specimens irrespective of progestin-treatment response

AH or carcinoma present in any  Absence of AH or carcinoma in any

All post-treatment samples (n = 168) subsequent specimen (n = 67) subsequent specimen (n = 101) p-value
Presence of papillae 48/67 (71.6) 71/101 (70.3) 851
Gland crowding 28/67 (41.8) 24/101 (23.8) 013
Percentage of sample with papillae 21.3+£223 13.8+21.3 031
Gland crowding and papillae 15/67 (22.4) 10/101 (10.0) 045
Papillae in >40% of the sample 15/67 (22.4) 15/101 (14.9) 212
Papillae in >40% of the sample and no gland crowding 11/67 (16.4) 11/101 (10.9) 298
Papillae in >30% of the sample 21/67 (31.3) 22/101 (21.8) 164
Papillae in >30% of the sample and no gland crowding 15/67 (22.4) 17/101 (16.8) .369
Papillae in >20% of the sample 27/67 (40.3) 22/101 (21.8) .010
Papillae in >20% of the sample and no gland crowding 18/67 (26.8) 17/101 (16.8) 17
Papillae in >10% of the sample 37/67 (55.2) 29/101 (28.7) .001
Papillae in >10% of the sample and no gland crowding 25/67 (37.3) 33/101 (32.6) .700
Number of branching papillae 30/67 (44.8) 33/101 (32.6) 13
Complex branching 5/67 (7.5) 2/101 (2.0) 082
Simple branching 25/67 (37.3) 31/101 (30.7) 373
No branching 37/67 (55.2) 68/101 (67.3) 113
Surface micropapillae 9/67 (13.4) 5/101 (5.0) 084
Surface micropapillae with any branching papillae 9/67 (13.4) 4/101 (3.9) 037
Cytological demarcation 27/67 (40.3) 13/101 (12.9) 001
Morules 15/67 (22.4) 12/101 (11.9) 597
Crowded cysts 8/67 (11.9) 9/101 (8.9) 246
Mucinous/columnar metaplasia 21/67 (31.3) 19/101 (18.8) 062

Values in parentheses indicate percentages and values are presented as mean + standard deviation.

AH, atypical endometrial hyperplasia.

plasias (including increase in cytoplasmic eosinophilia), chang-
es in chromatin pattern and prominence of nucleoli, surface
micropapillary architecture, glandular cystic dilatation, and in
some cases, an apparent “increase” in architectural complexity
relative to the pre-treatment sample [15,16]. The diagnostic
challenge for the pathologist is in the identification and “inter-
pretation” of individual features or combinations of features,
and how well such interpretations predict the likelihood that
disease is present. A 2022 survey suggests that there remains
significant interobserver variability amongst practitioners in
these interpretations [12].

In the current study, the authors evaluate the significance of
a specific architectural alteration that in our experience, is not
uncommonly observed in this setting: papillary change. A few
studies have previously addressed the issue, albeit peripheral-
ly: In one study of progestin-treated AH/EIN and carcinoma,
“cribriform/papillary changes” were noted to be present in
59.1% of the patient samples associated with eventual com-

plete response to treatment, as compared with 40.9% of those

https://doi.org/10.4132/jptm.2025.09.12

without complete response, and the presence of “cribriform or
papillary glandular pattern” was not associated with complete
response on univariate analyses [20]. In another study, “cribri-
form and/or papillary pattern” were presumed to be indicative
of glandular confluency for analytic purposes [15]. Mentrikos-
ki et al. [16] noted that prominent papillae may be observed
in this setting after several months of treatment. Finally, the
authors of the aforementioned survey on the issue considered
“foci of crowded glands and/or papillary architecture” to be in-
dicative of residual hyperplasia [12]. None of the above studies,
however, specifically assessed papillary change as an individual
variable. In the current study, we made no baseline assumptions
about the significance of papillary architecture, but sought to
determine what the presence, qualitative, and quantitative fea-
tures of such architecture might indicate in a post-treatment
sample regarding the likelihood of residual hyperplasia (defined
by glandular crowding/confluency) or carcinoma in subsequent
samples and specimens.

We highlight a few central findings: First, although papillae
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were present in only 51.5% of index (pre-treatment) samples,
they were present in at least one post-treatment sample for
every patient independent of their presence or absence in the
corresponding pre-treatment sample. This finding suggests
that papillary architecture in the studied setting is a change that
develops, or becomes more apparent with progestin-treatment.
When index and post-treatment biopsies were compared, the
latter showed a significantly higher frequency of papillary archi-
tecture. Findings from our analysis of the four post-treatment
groups, including the most study-germane group 1, addresses
the central study questions. Our study showed that in group 1
samples (papillae and no gland crowding), 39.7% showed AH/
EIN or carcinoma in at least one subsequent specimen. How-
ever, corresponding proportions in samples without any abnor-
malities (group 3) and samples with glandular crowding only
(group 4) were 24.0% and 44.4% respectively. Notably, group
1 was not associated with a significantly higher frequency of
the AH/EIN or carcinoma end points than group 3, casting
doubt on the significance of papillae as an isolated variable
in a post-treatment sample (i.e., in the absence of concurrent
glandular crowding). More extensive analysis of group 1 cases
highlighted the significance of the various papillae types. This
analysis showed that the average percentage of samples with
papillae was significantly higher in samples that were associat-
ed with outcomes-1 and -2 than those that were not (Table 3).
Therefore, we considered the possibility that it is the “extensive-
ness” of papillary architecture that is significant, rather than the
mere “presence” of papillary architecture. Our group analysis of
all post-treatment samples, as outlined in Table 4, compared the
frequencies of various pathologic features in patients with and
without the analytic end-point (AH/EIN or carcinoma in a sub-
sequent specimen). The frequency of papillary architecture was
not significantly different between the two groups. Although
more extensive papillary growth was seen in patient with a di-
agnosis of AH/EIN or carcinoma in a subsequent sample than
in patients without such diagnoses, this was not independent
of glandular crowding. Moreover, incrementally extensive
presence of papillary growth was not clearly associated with
residual AH/EIN or carcinoma. The practical implication of
these findings may be that a post-treatment sample that dis-
plays papillary architecture as the only abnormal finding simply
raises the possibility of unsampled glandular crowding but is
not in and of itself diagnostic of residual hyperplasia. In the
current analysis, the OR for study outcomes in the papillae +

glandular crowding group was higher than the OR for the glan-
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dular crowding group, raising the possibility that the addition
to papillae to glandular crowding increases the risk of study
outcomes than would otherwise be associated with glandular
crowding alone. However, the margin of error for that subsidi-
ary analysis was estimated to be high given the wide confidence
interval. As such, analyses with larger datasets will be required
to conclusively settle the question.

The present study has some additional limitations that should
be considered when assessing the significance of the findings.
Although we evaluated a large number of samples, the overall
cohort size is relatively small, which limited consideration of
potentially relevant variables such as highly complex papillae or
necrotic papillae, both of which had a low prevalence in our co-
hort. Second, our outcome measures may be distorted if papil-
lae are indeed a manifestation of hyperplasia, since we excluded
papillae in our definition of AH/EIN to allow for an analysis
of its significance. A follow-up sample inherently only gives
a partial portrait of the disease in the uterus when the biopsy
was taken, and it is unclear whether a longer follow-up time-
line than was present in our cohort is required to identify the
significance of papillary structures. Molecular and immunohis-
tochemical biomarkers of potential utility were not considered
due to the intentional emphasis on morphologic features and
the current inability of aberrant phenotypes to serve as a diag-
nostic gold standard. Duration of treatment and biopsy sample
intervals were not specifically analyzed given the size of our
sample as well as the fact the decision faced by the diagnostic
pathologist on the significance of a papillary structure in a giv-
en sample is not significantly influenced by these factors. The
key strength of the study is that it is the first to comprehensively
analyze this group of patients and that specifically assessed the
significance of papillary architecture in the setting of proges-
tin-treatment surveillance.

In summary, in post-treatment samples of AH/EIN, the pres-
ence of papillary architecture in and of itself was not associated
with a significantly higher likelihood of AH/EIN or carcinoma
in a subsequent specimen, compared to specimens without any
abnormalities. Glandular crowding, as well as glandular crowd-
ing concurrent with papillae, were found to be predictors of
subsequent residual AH/EIN or carcinoma in this setting.
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Background: Galactose-deficient IgA1 (Gd-IgA1) plays a crucial role in IgA nephropathy (IgAN). The monoclonal antibody KM55 has emerged as
a simplified method for detecting Gd-IgA1; however, the clinicopathological significance of immunohistochemistry for Gd-lgA1 remains under-
explored. This study evaluated the prognostic and clinicopathological significance of KM55 immunohistochemistry in IgAN. Methods: A total of
114 native kidney biopsies showing at least mild mesangial IgA positivity on immunofluorescence were retrospectively analyzed. Patients were
categorized as having IgAN or non-IgAN diseases. The KM55 immunohistochemical staining was graded as 0, 1+, 2+, 3+, or 4+. Data on Oxford
classification, laboratory parameters, and renal outcomes were collected. Results: The IgAN group showed significantly higher KM55 scores than
the non-IgAN group (median: 3 vs. 1; p < .001). IgAN cases were further stratified into KM55-high (=3+, n = 38) and -low groups (<2+, n = 37).
The KM55-high group had significantly higher diastolic blood pressure, blood urea nitrogen, creatinine, urine protein/creatinine ratio, and Ox-
ford mesangial hypercellularity scores, along with lower estimated glomerular filtration rate (eGFR) and serum albumin. Cox analysis revealed
significantly poorer outcomes in the KM55-high group for chronic kidney disease stage 4 (p = .015), end-stage renal disease (p = .024), and 75%
eGFR decline (p =.016). Conclusions: Mesangial Gd-IgA1 deposition graded by KM55 immunohistochemistry may be a useful adjunct for IgAN

diagnosis and a potential prognostic biomarker.

Keywords: Glomerulonephritis, IGA; Galactosyl-deficient IgA1; Immunohistochemistry

INTRODUCTION

IgA nephropathy (IgAN) is the most common glomerular dis-
ease worldwide, affecting individuals across all age groups. Its
clinical course is highly variable, ranging from asymptomatic
spontaneous remission to slow progression, or end-stage renal
disease (ESRD) requiring renal replacement therapy. Approxi-
mately 30%-40% of adults with IgAN progress to renal failure
within 20-30 years of follow-up [1,2]. Current understanding
of IgAN pathophysiology highlights a central role for galac-
tose-deficient IgA1 (Gd-IgAl) in disease development [2-4].
Among the two mucosal plasma cell-derived isoforms of IgA,
IgAl and IgA2, IgAl typically undergoes galactosylation of
O-linked N-acetylgalactosamine residues. Defects in this pro-
cess result in Gd-IgA1 formation. When autoantibodies bind

to Gd-IgA1l polymers, immune complexes can deposit in the
mesangial matrix, triggering complement activation, mesangial
expansion, and cellular proliferation [2,4]. This mechanism has
prompted efforts to incorporate serum levels or histologic Gd-
IgA1l expression into IgAN diagnosis, emphasizing the need
for efficient and specific measuring methods. Yasutake et al.
[5] developed a highly specific monoclonal antibody, KM55,
which has been successfully used to quantify serum Gd-IgAl
via enzyme-linked immunosorbent assay (ELISA). Unlike
traditional lectin-based assays or mass spectroscopy, KM55 is
now recognized as a reliable tool for quantitatively detecting
Gd-IgA1l in biopsied kidney tissue or serum, independent of
bioactivity and stability [3]. In a study by Zhang et al. [3], im-
munohistochemical (IHC) staining with KM55 showed greater
mesangial KM55 deposition in IgAN cases than in controls.
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However, the comparison lacked systematic numeric scoring
and statistical validation. Moreover, a standardized KM55 IHC
scoring system and the optimal diagnostic cutoff for IgAN have
yet to be established [3]. Martin-Penagos et al. [6] reported that
serum Gd-IgAl levels, measured using KM55, correlated with
the risk of progression to chronic kidney disease (CKD) stage 5,
suggesting KM55’s potential utility in prognostic assessment of
IgAN. However, most clinicopathological studies have focused
solely on plasma levels. To the best of our knowledge, no robust
quantitative study has examined the relationship between me-
sangium-specific Gd-IgA1 deposition, as measured by KM55
IHC, and clinical or pathological features, such as those defined
by the Oxford classification. Furthermore, the correlation be-
tween long-term prognosis and the extent of mesangial Gd-
IgA1 deposition remains insufficiently explored.

This study employed the KM55 monoclonal antibody to as-
sess the correlation between mesangial Gd-IgA1 deposition and
clinicopathologic characteristics in IgAN. Its predictive value
for long-term outcomes, particularly progression to ESRD, was
evaluated, and the mesangial KM55 staining was compared be-
tween IgAN and non-IgAN glomerular diseases.

MATERIALS AND METHODS

Patient selection and grouping

Patients who underwent renal biopsy and received a patholog-
ical diagnosis at Severance Hospital (Seoul, Korea) between
January 2010 and June 2024 were retrospectively analyzed (n =
114). Inclusion criteria were as follows: (1) renal biopsy speci-
men containing more than three viable glomeruli per section,
(2) immunofluorescence (IF) test demonstrating at least mild
mesangial IgA staining (IgA >1+), and (3) no prior history of
kidney transplantation. IgA intensity in IF was graded on a
scale of 0 (negative), 0.5+ (trace), 1+ (mild), 2+ (moderate),
and 3+ (strong).

Patients diagnosed with IgAN (n = 75) demonstrated me-
sangial electron-dense deposits (EDD) on electron microscopy
(EM) when glomeruli were available for evaluation. The IF
showed a C3 intensity of 1+ or greater in cases lacking EDD. All
IgAN cases exhibited IgA dominance or co-dominance on IE.
None of the IgAN cases met the diagnostic criteria for systemic
lupus nephritis as per the 2019 European League Against Rheu-
matism (EULAR)/American College of Rheumatology (ACR)
guidelines [7]. A subset of patients with IgAN (n = 9), whose

symptoms began within 50 days of coronavirus disease 2019
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(COVID-19) vaccination or infection, as previously reported
[8], were subclassified as the COVID-19-related IgAN group.
All IgAN cases had a clinical follow-up duration (the interval
between the first and last laboratory tests) exceeding 3 months.
Patients who did not meet the criteria for IgAN were assigned
to the non-IgAN group (n = 39). Pathological diagnoses in
this group included lupus nephritis (n = 27), post-infectious
glomerulonephritis (n = 3), pauci-immune crescentic glomeru-
lonephritis (n = 2), focal segmental glomerulosclerosis (FSGS),
not otherwise specified (n = 1), IgA-dominant infection-related
glomerulonephritis (n = 1), IgM nephropathy (n = 1), immune
complex-associated crescentic glomerulonephritis (n = 1),
membranous nephropathy (n = 1), membranoproliferative glo-
merulonephritis (n = 1), and subacute bacterial endocarditis-as-
sociated immune complex-mediated glomerulonephritis (n = 1).

A summary of the recruitment process is illustrated in Fig. 1.

Pathologic diagnosis

Biopsy specimens were processed into formalin-fixed paraf-
fin-embedded (FFPE) blocks and IF samples at collection. Tis-
sue sections were stained with hematoxylin-eosin, acid fuchsin
orange G, periodic acid methenamine silver, and periodic ac-
id-Schiff stains. IgAN was diagnosed based on the dominance
or co-dominance of IgA in IE. For each case, IF staining was
performed for IgG, IgA, IgM, C3, C4, Clgq, fibrinogen, kappa
light chain, and lambda light chain.

The Oxford classification was applied to each IgAN case
[9,10]. Mesangial hypercellularity (M) was classified as M0
(less than half of glomeruli exhibit mesangial expansion and
cell proliferation) or M1 (more than half of glomeruli exhibit
mesangial expansion and cell proliferation). Endocapillary hy-
percellularity (E) was scored as EO (no endocapillary hypercel-
lularity) or E1 (presence of endocapillary hypercellularity). Seg-
mental sclerosis (S) was classified as SO (absence of segmental
sclerosis or adhesion of capillary tuft) or S1 (presence). Tubular
atrophy and interstitial fibrosis (T) were classified as TO (<25%
cortical involvement), T1 (25%-50% cortical involvement), and
T2 (>50% cortical involvement). Crescent formation (C) score
was classified as CO (no crescent), C1 (0%-25% of glomeruli
with crescent formation), and C2 (>25% of glomeruli with
crescent formation). Moreover, each IgAN case was evaluated
according to the Haas classification system: grade I (minimal
change), II (focal segmental glomerulosclerosis), III (focal me-
sangioendocapillary proliferation), IV (diffuse proliferation),

and V (advanced chronic, >40% of glomeruli are globally scle-
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Fig. 1. Overview of study design. IF, immunofluorescence; EM, electron microscopy; EDD, electron-dense deposit; IgAN, IgA nephropathy;

GN, glomerulonephritis; FSGS, focal segmental glomerulosclerosis.

rotic) [11].

Each case underwent an EM examination. The researcher
reviewed digitalized images of glomeruli. Among the IgAN
group, 71 cases had examinable glomeruli, all exhibiting EDD
in the mesangium. In the non-IgAN group, all cases had exam-
inable glomeruli, with 29 showing mesangial EDD, while the

remaining 10 cases showed no EDD in the mesangium.

IHC staining and evaluation of KM55

The THC staining was performed using an automated IHC
stainer (BOND-III, Leica Biosystems, Nussloch, Germany).
The FFPE sections (3 um thick) were dewaxed using BOND
Dewax Solution (Leica Biosystems) and 100% alcohol. Heat-in-
duced epitope retrieval was performed with BOND Epitope
Retrieval Solution 2 (Leica Biosystems) for 20 minutes. Antigen
retrieval was carried out using protease 1 (Ventana Medical
Systems, Tucson, AZ, USA) at a concentration of 0.38 mg/mL
for 30 minutes. Peroxidation was processed for 10 minutes. The
KMS55 primary antibody (rat IgG monoclonal antibody against
human Gd-IgA1l, Immuno-Biological Laboratories, Fujioka,

Japan) at a 10 pg/mL concentration was applied for 15 minutes.

https://doi.org/10.4132/jptm.2025.09.17

The secondary antibody (conjugated goat anti-rat IgG anti-
body) was automatically added for 15 minutes. Then, the Bond
Polymer Refine Detection Kit (Leica Biosystems) was used for
the polymer, 3,3"-diaminobenzidine (DAB), and hematoxy-
lin staining in an automated process: polymer for 8 minutes,
mixed DAB for 8 minutes, and hematoxylin for 3 minutes. The
protocol was validated using positive controls (several IgAN
cases) and negative controls (nephrectomy specimens from pa-
tients without medical kidney disease). In each case, mesangial
KMS55 expression was assessed via IHC and graded on a scale
of 0 (negative), 1+ (faint), 2+ (weak), 3+ (moderate), and 4+
(strong). Representative images for each grade are represented

in Fig. 2.

Clinical information

Clinical information, including age at diagnosis, sex, presenting
complaint, date of initial presentation, and laboratory results at
the time of initial biopsy, was obtained from electronic medical
records. Laboratory parameters included blood pressure, serum
creatinine, albumin, estimated glomerular filtration rate (eGFR),

calculated using the CKD-epidemiology collaboration (CKD-
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Fig. 2. Representative KM55 scores. (A) 0. (B) 1+. (C) 2+. (D, E) 3+. (F) 4+.

EPI) method, urine protein-creatinine ratio, 24-hour urine
protein excretion, microscopic red blood cell count in urine, and
complete blood count. Follow-up medical records to May 2024
were reviewed for the IgAN group to gather prognostic informa-
tion. The ESRD state was defined as an eGFR <15 mL/min/1.73
m? along with a clinical plan for renal replacement therapy
(dialysis or transplant). CKD stage 4 was defined as an eGFR
of 15-29 mL/min/1.73 m’. For IgAN cases, the dates of ESRD

72

onset, CKD stage 4 progression, and a 275% reduction from
baseline eGFR (eGFR-25%) were recorded. Survival time was
calculated from the biopsy date to the occurrence of one of these
outcomes. In patients with clinical features suggestive of system-
ic lupus erythematosus (SLE), anti-nuclear antibody (ANA) lev-
els were measured; those with positive ANA results underwent
complement testing. Among 17 patients with ANA positivity, six
had anti-DNA antibody levels evaluated. At the time of biopsy,

https://doi.org/10.4132/jptm.2025.09.17
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serum C3 and C4 levels were measured in 70 IgAN cases, and

serum IgA levels were assessed in 65 IgAN cases.

Statistics

Depending on data distribution, either the independent two-
tailed t-test or the Mann-Whitney U test was used to compare
the two groups. For comparisons across three or more groups,
normally distributed variables were analyzed using analysis of
variance (ANOVA), followed by Bonferroni post-hoc testing.
Conversely, non-normally distributed variables were evaluated
using the Kruskal-Wallis test. Categorical variables were com-
pared using the chi-square test or Fisher’s exact test, as appro-
priate. Prognostic analyses for progression to ESRD, CKD stage
4, and eGFR-25% were analyzed using Kaplan-Meier curves,

and univariate and multivariate Cox regression models.

RESULTS

Discriminative ability of KM55 IHC in diagnosing
IgAN

Seventy-five patients were classified as the IgAN group and 39
as the non-IgAN group. Baseline clinico-epidemiological char-
acteristics are presented in Table 1. For each case, KM55 IHC
staining was graded on a five-tier scale based on the intensity
and extent of mesangial Gd-IgA1 deposition. The IgAN group
exhibited substantially higher KM55 scores than the non-IgAN
group (median [interquartile range (IQR)], 3 [2 to 3] vs. 1 [0

Jeong HI et al.

to 1]; p <.001) (Fig. 3A). Four patients in the non-IgAN group
exhibited a KM55 score of 2+, all diagnosed with lupus nephri-
tis. The receiver operating characteristic curve illustrating the
diagnostic performance of KM55 IHC is shown in Fig. 3B. The
area under the curve was 0.907 (95% confidence interval [CI],
0.855 to 0.959). The optimal KM55 score cutoff for diagnosing
IgAN was 2+, yielding a sensitivity of 0.760 and a specificity
of 0.897. Eighteen patients in the IgAN group had a KM55
score of 1+, falling below this cutoff. Further clinical data were
analyzed to compare these KM55 1+ IgAN cases with those
scoring >2+. The serum IgA levels at the time of initial biopsy
were available for 16 patients with KM55 1+ and 49 with KM55
>2+. The KM55 1+ group had significantly lower IgA levels
(mean + standard deviation, 237.23 + 78.91 vs. 317.66 + 136.87;
p = .025). However, no considerable differences were found
between the groups in IF IgA intensity (p = .327) or the interval

between clinical presentation and biopsy (p = .651).

Relationship between pathologic variables and KM55
score in IgAN

Among IgAN patients, 21 had an M1 score, 30 had E1, 48 had
S1, 11 had T1 or T2, and 29 had C1 or C2 scores. The distribu-
tion by Haas classification was as follows: two (grade I), seven
(IT), 42 (II1), 18 (IV), and 6 (V). The M and T scores of the Ox-
ford classification were significantly associated with the KM55
mesangial scores (Table 2). Patients with an M1 score had high-
er KM55 scores (median [IQR], 3 [2.5 to 3]) than those with an

Table 1. Clinical characteristics and initial laboratory data profile of study groups

Characteristic IgAN group (n = 75) Non-IgAN group (n = 39) p-value
Male sex 24 (32.0) 12 (31.0) >99
Age (y1) 386+ 15.7 4124121 226
Microscopic hematuria (=3 RBC/HPF) 70 (93.3) 34 (87.2) 451
Proteinuria (UPCR, g/g Cr) 1.33 (0.72-2.50) 2.81(1.46-6.78) <.001
Serum creatinine (mg/dL) 0.95 (0.71-1.21) 0.79 (0.55-0.97) 212
Serum albumin (g/dL) 42 (3.7-4.3) 2.8 (2.2-3.5) <.001
eGFR (mL/min/1.73 mz) 84.0 (60.0-113.0) 103.0 (78.5-119.5) 467
Hemoglobin (g/dL) 131+ 1.7 104 £ 2.5 <.001
WBC count [/HL] 6,740 (5,420-7,960) 5,570 (2,500-8,540) .022
Platelet (X1O3/|1L] 265 (217-310) 220 (121-300) .003
EDD in mesangium 7171 (100) 29/39 (74.4) <.001
IF IgA intensity (1+, 2+, 3+) 5, 30, 40 20, 15, 4 <.001

Values are presented as number (%), mean + SD, or median (IQR).

IgAN, IgA nephropathy; RBC, red blood cell; HPF, high-power field; UPCR, urine protein/creatinine ratio; eGFR, estimated glomerular filtration rate;
WBC, white blood cell; EDD, electron-dense deposit; IF, immunofluorescence; SD, standard deviation; IQR, interquartile range.

“Case without identifiable glomeruli in electron microscopy is excluded.

https://doi.org/10.4132/jptm.2025.09.17
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Fig. 3. Mesangial KM55 scores graded by immunohistochemistry. (A) Comparison between IgA nephropathy (IgAN) and control groups.
Boxes represent the interquartile range; bold horizontal lines indicate median KM55 scores. (B) Receiver operating characteristic (ROC)
curve for IgAN differentiation using mesangial KM55 scores. The dot indicates sensitivity and 1-specificity at optimal cutoff (2+).

MO score (2 [1 to 3]) (p = .017). Patients with a T1-2 score had
significantly higher KM55 scores (3 [3 to 3]) compared to those
scored with a TO score (2 [1 to 3]) (p = .049). However, E, S, and
C scores from the Oxford classification showed no substantial
association with mesangial KM55 scores. Similarly, differences
in KM55 scores across Haas classification grades were insignifi-
cant (p =.233) (Table 2).

Clinicopathological and prognostic implications of the
KM55 score in IgAN

Given the significant association between the KM55 score and
Oxford classification, patients with IgAN were further stratified
by mesangial KM55 score. All patients scored 1+, 2+, 3+, or 4+,
allowing categorization into four groups. Comparison across
these groups revealed significant differences in serum creati-
nine (p =.015), eGFR (p =.020), and serum albumin (p = .008)
(Table 3). Pairwise comparisons showed significant differences
in serum creatinine between KM55 2+ vs. KM55 3+ (p = .003),
and KM55 2+ vs. KM55 4+ (p = .018); in eGFR between KM55
2+ vs. KM55 4+ (p = .045) and in serum albumin between
KM55 1+ vs. KM55 2+ (p = .031), KM55 1+ vs. KM55 3+ (p =
.003), and KM55 1+ vs. KM55 4+ (p = .004). Moreover, serum
creatinine, uric acid, blood urea nitrogen (BUN), and systolic
blood pressure showed a rising trend from KM55 2+ to 4+,
though this trend was not observed between 1+ and 2+ (Table

3). The interval from initial clinical presentation to biopsy did
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Table 2. Comparison of mesangial KM55 score among different
histologic grade group scored according to Oxford classification of
lgAN

Mesangial KM55 score,

median (range) p-value®
M score 017
MO 2(1-3)
M1 3(2.5-3)
E score 434
EO 2(1-3)
E1 3(2-3)
S score .080
SO 2(1-3)
S1 3(2-3)
T score .049
TO 2(1-3)
T1and T2 3(3-3)
C score .881
Cco 3(1-3)
C1and C2 2 (2-3)
Haas classification 233
| 2(1-3)
] 3(1-3)
1] 2 (1-3)
1\ 3(2-3)
V 3(1.75-4)

IgAN, 1gA nephropathy.
*Mann-Whitney U test for MEST-C score, Kruskal-Wallis test for Haas
classification score.
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not differ substantially across groups (p = .935). Complement
levels (C3 and C4) showed no significant differences between
the two groups (p = .324 and p = .486) (Table 3). Serum al-
bumin consistently decreased from KM55 1+ to 4+ (Table 3).
The urine protein/creatinine ratio (UPCR) and diastolic blood
pressure showed a consistent increasing trend as the KM55
score rose from 1+ to 4+, although this change was insignifi-
cant (Table 3). Serum IgA levels increased as the KM55 score
progressed from 1+ to 3+, while no such trend was observed
between 3+ and 4+ (Table 3), with a significant difference in
IgA levels (p = .050) (Table 3). Among the Oxford classification

variables, only the M score demonstrated a significant differ-

Table 3. Characteristics comparison of IgAN according to KM55 score
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ence across the four groups (p = .042), with an increasing trend
in the M1 ratio from KM55 1+ to KM55 3+ (Table 3).

Based on these trends, patients with IgAN were categorized
into the KM55-high group (=3+) and the KM55-low group
(<2+). Thirty-eight patients were classified into the KM55-
high group, while 37 were placed in the KM55-low group. The
KM55-high group had significantly higher serum creatinine (p
=.003), lower eGFR (p = .007), higher UPCR (p = .048), higher
BUN (p = .041), lower albumin (p = .010), and higher diastolic
blood pressure (p = .027) (Table 4). There was no significant
difference in the duration between the initial clinical presenta-

tion and biopsy date (p = .937). Moreover, complement levels

Characteristic KM55 1+ (n = 18) KM55 2+ (n = 19) KM55 3+ (n = 29) KM55 4+ (n =9) p-value
Male sex 5(27.8) 6(31.6) 11 (37.9) 2(22.2) .808
Age (yn) 37.4 £18.1 35.2 £ 15.3 40.0 £ 14.2 50.2 £ 12.8 AN
Microscopic hematuria 17 (94.4) 17 (89.5) 28 (96.6) 8 (88.9) 855
UPCR [g/g Cr) 1.03 (0.64-1.46) 1.23 (0.45-2.11) 1.58 (0.73-2.77) 2.05 (1.02-2.87) 172
Serum creatinine (mg/dL) 0.92 (0.75-1.13) 0.72 (0.58-0.97) 1.04 (0.82-1.32) 1.16 (0.81-1.37) .015
Serum BUN (mg/dL) 14.0 (11.1-18.6) 11.3 (8.5-15.5) 15.8 (11.6-19.5) 16.1 (12.9-19.4) .078
Serum uric acid (mg/dL) 5.25(3.98-6.48) 4.90 (3.30-6.40) 5.30 (4.25-7.20) 6.50 (4.70-6.95) 232
eGFR (mL/min/1.73 mz) 90.33 + 42.45 105.68 + 32.83 78.72 £ 32.45 67.67 = 20.75 .020
Serum albumin (g/dL) 4.3 (4.2-4.6) 4.2 (3.8-4.3) 4.0 (3.6-4.3) 3.9 (3.7-4.2) .008
Systolic blood pressure (mmHg) 125.0 (112.8-135.3) 120.0 (105.0-135.0)  124.0 (120.0-130.5)  127.0 (121.0-135.0) 508
Diastolic blood pressure (mmHg) 73.5 (66.5-79.3) 75.0 (70.0-85.0) 80.0 (70.0-85.5) 80.0 (80.0-87.0) .083
Hemoglobin (g/dL) 13.51 £ 1.75 12.62 + 1.34 13.12 + 1.90 13.00 + 2.00 487
White blood cell count (/HL] 7,240 (5,358-7,638) 6,720 (5,090-7,840) 6,650 (5,515-7,710) 9,240 (4,855-10,450) J74
Platelet count (x103/pL) 283.5(216.0-318.3) 271.0 (249.0-363.0) 248.0 (214.5-289.0) 261.0 (189.0-346.0) .396
Immunosuppressant use (%) 3(16.7) 9 (47.4) 14 (48.3) 5 (55.6) 113
Serum C3 (mg/dL) 107.00 (99.73-125.28)* 108.85 (94.60-133.40)° 102.00 (92.95-118.90)° 122.10 (98.40-134.05)° 324
Serum C4 (mg/dL) 2558 (19.18-34.72F  25.47 (21.98-31.01)°  25.36 (19.93-29.70)°  32.40 (23.25-42.92)" 486
Serum IgA (mg/dL) 237.39 + 76.72° 280.87 + 130.57' 343.42 + 141.06° 312.89 + 54.37" 050
ESRD progression 1(5.6) 1(5.3) 9 (31.0) 5 (55.6) .003
CKD stage 4 progression 1 (5.6) 2 (10.5) 9 (31.0) 6 (66.7) 002
eGFR-25% occurrence 0 2(10.5) 9 (31.0) 5 (55.6) 002
Days before biopsy 74 (31.75-296.5) 55 (34-238) 80 (29.5-278.5) 59 (53-126.5) 935
Oxford classification
M1 2 (11.1) 3(15.8) 13 (44.8) 3(33.3) .042
E1 5(27.8) 8 (42.1) 14 (48.3) 3(33.3) .542
S1 9 (50.0) 12 (63.2) 19 (65.5) 8(88.9) 272
T1 and T2 1(5.6) 1(5.3) 7 (24.1) 2(22.2) 172
C1 and C2 5(27.8) 11 (57.9) 10 (34.5) 3(33.3) .250

Values are presented as number (%), mean + SD, or median (IQR).

IgAN, IgA nephropathy; UPCR, urine protein/creatinine ratio; BUN, blood urea nitrogen; eGFR, estimated glomerular filtration rate; ESRD, end-stage
renal disease; CKD, chronic kidney disease; eGFR-25%, 275% reduction from baseline eGFR; SD, standard deviation; IQR, interquartile range.
*18 cases included; "18 cases included; 25 cases included; °9 cases included; 16 cases included; “18 cases included; °22 cases included; "9 cases in-

cluded.
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(C3: p =.522, C4: p =.677) showed no substantial difference be-
tween the groups (Table 4). Serum IgA levels were significantly
higher in the KM55-high group (p = .012) (Table 4). Among
the Oxford classification variables, only the M score, which was
higher in the KM55-high group, showed a considerable differ-
ence between the two groups (p = .012) (Table 4).

In univariate Cox regression analysis for event-free survival,
the KM55 score was revealed as a significant prognostic factor
for ESRD (p = .012), CKD stage 4 (p = .005), and eGFR-25%
(p = .004). Event-free survival curves comparing the KM55 1+,
2+, 3+, and 4+ subgroups are shown in Fig. 4A, C, and E. A

KM55 THC in IgA nephropathy

more distinct gap is observed between the KM55 2+ and KM55
3+ subgroups, while survival differences between 1+ and the
2+, 3+, or 4+ subgroups are relatively ambiguous. This pattern
suggests that categorizing the IgAN group into KM55-high
(=3+) and KM55-low groups (<2+) is reasonable. Among the
KM55-high group, 14 (37%) progressed to ESRD, 15 (40%) to
CKD stage 4, and 14 (37%) to eGFR-25%, while in the KM55-
low group, two (5%) progressed to ESRD, three (8%) to CKD
stage 4, and two (5%) to eGFR-25% (Table 4). In univariate
survival analysis, the KM55-high group revealed a significantly
higher risk for progression to ESRD (hazard ratio [HR], 5.54;

Table 4. Characteristics comparison of IgAN between the KM55-high group (KM55 score >3+) versus the KM55-low group (KM55 score

<2+)
Characteristic KM55-high group (n = 38) KM55-low group (n = 37) p-value
Male sex 13 (34.2) 1 (29.7) .866
Age (yn) 409 + 14.7 36.3 £ 16.6 207
Microscopic hematuria 36 (94.7) 34 (91.9) 674
UPCR [g/g Cr) 1.73 (0.81-2.82) 1.13 (0.61-1.79) .048
Serum creatinine (mg/dL) 1.07 (0.81-1.31) 0.84 (0.60-0.99) .003
Serum BUN (mg/dL) 15.9 (11.7-19.3) 12.9 (10.2-17.0) .041
Serum uric acid (mg/dL) 5.86 + 1.57 5.20 + 1.65 .083
eGFR (mL/min/1.73 mz) 76.11 £ 30.21 98.22 + 38.08 .007
Serum albumin (g/dL) 3.90 (3.68-4.30) 4.20 (4.10-4.45) 010
SBP (mmHg) 124.5 (120.0-130.3) 120.0 (108.0-135.0) 279
DBP (mmHg) 80.0 (70.8-85.3) 75.0 (67.5-80.0) 027
Hemoglobin (g/dL) 13.09 + 1.90 13.05 + 1.60 925
White blood cell count (/uL) 6,665 (5,383-8,948) 7,010 (5,295-7,775) 990
Platelet count (x103/pL) 250.5 (213.8-291.0) 272.0 (233.0-324.5) 101
Immunosuppressant usage 19 (50.0) 12 (32.4) 190
Serum C3 (mg/dL) 103.85 (93.63-125.43)a 107.00 (97.05-125.63)b 522
Serum C4 (mg/dL) 26.24 (20.93-35.50)a 25.47 (20.58-32.14)b 677
Serum IgA (mg/dL) 334.55 + 122.13c 260.41 + 109.29d 012
ESRD progression 14 (36.8) 2 (5.4) <.001
CKD stage 4 progression 15 (39.5) 3(8.1) <.001
eGFR-25% occurrence 14 (36.8) 2 (5.4) <.001
Days before biopsy 62 (43.25-223.5) 63 (34-251.5) 937
Oxford classification
M1 16 (42.1) 5(13.5) .012
E1 17 (44.7) 13 (35.1) .540
S1 27 (71.1) 21 (56.8) 294
T1 and T2 9(23.7) 2(5.4) .056
C1and C2 13 (34.2) 16 (43.2) 571

Values are presented as number (%), mean + SD, or median (IQR).
IgAN, IgA nephropathy; UPCR, urine protein/creatinine ratio; BUN, blood urea nitrogen; eGFR, estimated glomerular filtration rate; SBP, systolic blood
pressure; DBP, diastolic blood pressure; ESRD, end-stage renal disease; CKD, chronic kidney disease; eGFR-25%, 275% reduction from baseline eGFR;

SD, standard deviation; IQR, interquartile range.

234 cases included:; "36 cases included:; 31 cases included; *34 cases included.
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Fig. 4. Survival analysis for renal function decline. (A, B) Event-free survival for end-stage renal disease (ESRD) progression. (C, D) Event-
free survival for chronic kidney disease (CKD) stage 4. (E, F) Event-free survival for estimated glomerular filtration rate decline >25% (eGFR-
25%). (A, C, E) Comparison among KM55 subgroups: 1+, 2+, 3+, and 4+. The blue solid line represents KM55 1+, the green solid line
represents 2+, the blue dotted line represents 3+, and the green dotted line represents 4+. (B, D, F) Comparison between KM55-high and
KM55-low groups. The solid line represents the KM55-low group; the dotted line represents the KM55-high group.

95% CI, 1.26 to 24.45; p = .024), CKD stage 4 (HR, 4.71; 95%
CI, 1.36 to 16.36; p = .015), and eGFR-25% (HR, 6.15; 95% CI,
1.39 to 27.12; p = .016) compared to the KM55 low group (Table
5, Fig. 4B, D, and F). Among the Oxford classification variables,

https://doi.org/10.4132/jptm.2025.09.17

only the T score was significantly associated with ESRD (p <
.001) (Table 5) and eGFR-25% progression (p < .001) (Table 5).
In contrast, M (p =.021), E (p = .030), and T (p < .001) scores
were predictive of CKD stage 4 progression (Table 5). In multi-
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Table 5. Survival analysis for risk of progression into ESRD, CKD4, and eGFR-25%

Univariate analysis

Multivariate analysis

HR (95% Cl) p-value HR (95% Cl) p-value
ESRD progression
KM55-high vs. KM55-low 5.54 (1.26-24.45) 024 3.23 (0.67-15.66) 146
M1 vs. MO 2.71 (0.89-8.22) .079 - -
E1vs. EO 246 (0.72-8.41) 150 - -
S1vs. SO 3.42(0.77-15.19) 105 - -
T1vs. TO 7.04 (2.60-19.08) <.001 473 (1.65-13.58) .004
C1,2vs. CO 1.09 (0.39-3.07) .876 - -
CKD4 progression
KM55-high vs. KM55-low 4.71 (1.36-16.36) .015 2.34 (0.55-9.91) .249
M1 vs. MO 3.11 (1.18-8.16) .021 1.07 (0.27-4.27) 920
E1vs. EO 3.25(1.12-9.43) .030 2.12 (0.52-8.61) 291
S1vs. SO 2.88 (0.83-9.94) .095 = =
T1vs. TO 17.71 (6.09-51.53) <.001 11.70 (3.55-38.58) <.001
C1,2vs. CO 1.47 (0.58-3.76) 419 = =
eGFR-25%
KM55-high vs. KM55-low 6.15(1.39-27.12) .016 4.25(0.91-19.83) .066
M1 vs. MO 2.84 (0.95-8.50) .062 - -
E1vs. EO 3.46 (0.90-13.34) .07 - -
S1vs. SO 3.68 (0.84-16.22) .085 - -
T1vs. TO 5.42 (2.00-14.65) <.001 3.52 (1.25-9.90) .017
C1,2vs.CO 1.10 (0.40-3.02) .849 - -

ESRD, end-stage renal disease; CKD4, chronic kidney disease stage 4; eGFR-250%, >75% reduction from baseline eGFR; HR, hazard ratio; Cl, confi-

dential interval; eGFR, estimated glomerular filtration rate.

variate analysis, after adjusting for significant Oxford classifica-
tion factors, the KM55 score was not associated with prognosis
(ESRD, p = .146; CKD stage 4, p = .249; eGFR-25%, p = .066).
However, T score was independently significant for progression
to ESRD (HR, 4.73; 95% CI, 1.65 to 13.58; p = .004), CKD stage
4 progression (HR, 11.70; 95% CI, 3.55 to 38.58; p < .001) and
eGFR-25% (HR, 3.52; 95% CI, 1.25 t0 9.90; p = .017) (Table 5).

Comparison of COVID-19-related and COVID-19-
unrelated IgAN groups

Among the patients with IgAN, nine were temporally associ-
ated with COVID-19 vaccination or infection (Table 6). In the
COVID-19-related group, two (22%) were men, averaging 35.0
years. In the COVID-19-unrelated group, 22 (33%) were men,
with an average age of 39.1 years. The serum albumin levels in
the COVID-19-related and unrelated groups were 4.30 (4.30—
4.55) and 4.10 (3.70-4.30), respectively, showing a significant
difference (p =.003). No other clinical variables differed signifi-
cantly between the two groups. Regarding the Oxford classifi-

cation scores of MEST-C, only the E score showed a significant
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difference between the groups (p = .018). The percentage of
patients with an E1 score was 77% (n = 7) (COVID-19-relat-
ed group) compared to 35% (n = 23) (COVID-19-unrelated
group). Other clinicopathologic variables are summarized
in Table 6. In the COVID-19-related group, no patients pro-
gressed to ESRD or CKD stage 4, while in the COVID-19-un-
related group, 16 (24%) patients showed ESRD progression, 18
(27%) showed CKD stage 4 progression, and 16 (24%) showed
eGFR-25% progression. In KM55 IHC, the COVID-19-unre-
lated group had a significantly higher mesangial KM55 score
(median, 3; IQR, 2 to 3) than the COVID-19-related group
(median, 1; IQR, 1 to 2.5) (p =.022).

DISCUSSION

Recent biological research has emphasized the importance
of Gd-IgAl in the pathophysiology of IgAN [2]. Gd-IgA1l is
proposed to form immune complexes that accumulate in the
glomerular mesangium, stimulating mesangial cell proliferation

and matrix production [2]. In this context, various studies have
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Table 6. Baseline characteristics comparison between IgAN patients clinically associated with COVID-19 infection or vaccination, versus
COVID-19 unrelated IgAN group

IgAN related to COVID-19 IgAN unrelated to COVID-19

Characteristics

(n=9 (n = 66) p-value

Male sex 2(22.2) 22 (33.3) 710
Age (yn) 350+ 16.5 39.1 £ 15.7 468
Follow up period (day), median (min-max) 452 (98-560) 2,115.5 (245-4,580) -
Microscopic hematuria 9 (100) 61 (92.4) >.99
UPCR [g/g Cr), median (IQR) 1.13 (0.86-1.38) 1.49 (0.69-2.65) 405
Serum creatinine (mg/dL), median (IQR) 0.77 (0.58-0.99) 0.97 (0.72-1.23) 157
Serum albumin (g/dL), median (IQR) 4.30 (4.30-4.55) 4.10 (3.70-4.30) .003
eGFR-CKD-EPI (mL/min/1.73 m’) 101.8 + 34.8 85.0 + 358 .190
SBP (mmHg] 122.3 £ 19.2 124.7 £ 13.2 .643
DBP (mmHg) 74.0 £ 8.0 775+ 10.7 352
Uric acid (mg/dL) 5.60 £ 1.47 5.52 + 1.67 .895
BUN (mg/dL), median (IQR) 12.6 (8.2-15.7) 14.9 (11.2-18.7) .108
ESRD progression 0 16 (24.2) <.001
CKD stage 4 progression 0 18 (27.3) <.001
eGFR-25% occurrence 0 16 (24.2) <.001
Days before biopsy, median (IQR) 63 (45-118) 62 (33.75-250.75) 813
Haas classification (I, II, 1, IV, V) 0,1,7,1,0 2,6,35,17,6 672
Oxford classification

M (MO, M1) 9,0 45, 21 .054

E (EO, E1) 2,7 43,23 .018

S (S0, S1) 2,7 25,41 475

T(T0, T1,T2) 9,0,0 55, 11,0 .340

C(Co, C1,C2) 54,0 41,23,2 485
IF intensity of IgA (1+, 2+, 3+) 0,4,5 5,26, 35 893
KM55 score, median (IQR) 1(1-2.5) 3(2-3) 022

Values are presented as number (%) or mean + SD unless otherwise indicated.

IgAN, IgA nephropathy; COVID-19, coronavirus disease 2019; UPCR, urine protein/creatinine ratio; IQR, interquartile range; eGFR; estimated glomeru-
lar filtration rate; CKD-EPI, chronic kidney disease Epidemiology Collaboration; SBP, systolic blood pressure; DBP, diastolic blood pressure; BUN, blood
urea nitrogen; ESRD, end-stage renal disease; CKD, chronic kidney disease; eGFR-25%, 275% reduction from baseline eGFR; IF, immunofluorescence;

SD, standard deviation.

focused on measuring Gd-IgA1 levels in the plasma and tissues
of patients with IgAN. Earlier methods relied on Helix aspersa
agglutinin lectin, but these were limited by batch-dependent
bioactivity and stability issues [5]. More recently, Yasutake et al.
[5] developed a novel monoclonal antibody, KM55, specifically
targeting Gd-IgA1l. When integrated with ELISA, KM55 en-
ables several studies to measure serum Gd-IgAl levels without
relying on lectin-based assays or mass spectrometry [3,5,6].
This study applied KM55 THC to detect mesangial deposition
of pathogenic Gd-IgA1 in renal biopsy specimens from patients
with IgAN. Significantly higher KM55 scores were observed in
IgAN cases compared to the non-IgAN group.

Several studies have employed KM55 using different meth-

https://doi.org/10.4132/jptm.2025.09.17

ods to understand IgAN. Zhang et al. [3] reported significantly
elevated serum Gd-IgA1l concentration in patients with IgAN
using the KM55-based assay; qualitative differences in KM55
IHC staining were noted between the IgAN and non-IgAN
groups, though no formal statistical analysis of IHC scores was
performed. Additional research utilizing KM55 IF staining
identified granular Gd-IgA1 deposits in biopsies from primary
and secondary IgAN, as well as Henoch-Schonlein purpura
(HSP), whereas other glomerular diseases such as membranop-
roliferative glomerulonephritis, lupus nephritis, and IgA-related
monoclonal gammopathy of renal significance, shows signifi-
cantly lower KM55 intensity [4,12,13]. Ishiko et al. [14] applied
IF staining in pediatric patients, including 17 IgAN cases and
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various other glomerular diseases, to assess the specificity of
KMS55. However, the study was limited by a small sample size
and insufficient glomeruli per case. Raj et al. [4] reported the
specificity of KM55 staining in IgAN and HSP. Meanwhile,
Zhao et al. [15] evaluated KM55 IF staining in 40 IgAN cases
and other glomerular diseases, demonstrating a significant
correlation between Gd-IgA1 deposition scores and the odds of
IgAN; however, KM55 expression was not entirely I[gAN-specif-
ic; however, IF staining has limitations, including poor compat-
ibility with long-term storage or paraffin blocks, and the need
for specialized equipment and a darkroom.

In our study, 39 cases were classified as non-IgAN entities.
Among them, two were diagnosed with pauci-immune cres-
centic glomerulonephritis and one with FSGS, not otherwise
specified, despite mild IgA expression on IF. The pauci-im-
mune crescentic glomerulonephritis cases were characterized
by marked crescent formation on light microscopy and the
absence of mesangial EDD on EM. Of those two cases, one
demonstrated anti-neutrophil cytoplasmic antibody positiv-
ity on serologic testing, presented with rapidly progressive
glomerulonephritis, and lacked definite features of mesangial
expansion. The diagnosis of the FSGS case was supported by
the absence of mesangial hypercellularity on light microsco-
py and the absence of EDD on EM. Our study assessed the
diagnostic utility of KM55 IHC in distinguishing IgAN from
other glomerular diseases. The optimal KM55 score cutoff
for diagnosing IgAN was determined as >2+. Eighteen IgAN
cases exhibited only a 1+ score, suggesting the potential for
false-negative results. Therefore, KM55 scoring demands a
meticulous examination of the mesangial area. Meanwhile,
KMS55 1+ IgAN cases had significantly lower serum IgA levels
than other IgAN cases, implying that serum IgA levels could
aid interpretation when KM55 IHC results are borderline. Four
non-IgAN cases, all lupus nephritis, showed a KM55 score of
2+, potentially compromising specificity. In these cases, the
first patient had IF intensities of IgA, IgG, C3, and Clq at 2+,
3+, 3+, and 3+, respectively. The second patient had ill-defined
mesangial EDD, with IF intensities of IgA, IgG, C3, and Clq
at 24, 3+, 1+, and 2+. The third patient exhibited lumpy EDD
and IF intensities of IgA, IgG, C3, and Clq at 2+, 3+, 1+, and
1+. The fourth patient showed IF intensities of IgA, IgG, C3,
and Clqat 1+, 14, 2+, and 2+. The EM findings of the first and
fourth patients revealed no clear mesangial EDD, though sub-
epithelial and intramembranous deposits were present. These

findings underscore the interpretive challenge in distinguishing
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mesangial from subepithelial regions in glomerular IHC slides.
There is a possibility of non-specific staining in IHC, which
may lead to overestimation of mesangial Gd-IgA1 deposition
in KM55 THC. In such cases, EM is a useful ancillary tool to
exclude false-positives, especially when differential diagnosis is
required. All four false-positive cases in our study were lupus
nephritis, highlighting the importance of clinical correlation,
especially in evaluating for SLE. Although KM55 is a helpful
diagnostic adjunct, clinical and serologic data must be carefully
considered. Among the patients with KM55 2+ non-IgAN, only
one had serum IgA data (247 mg/dL at the time of biopsy),
which was comparable to the average in other patients without
IgAN (303.0 = 173.5 mg/dL, p = .249). Although serum IgA
levels in the IgAN group tended to increase with higher KM55
scores, this correlation was not observed in the non-IgAN
group. This finding suggests that false-positive KM55 scores in
non-IgAN cases likely result from non-specific staining rather
than actual deposition of circulating aberrant IgA.

KMS55 THC likely reflects the extent of Gd-IgA1l deposition,
and the observed correlation between the M score and KM55
score in our findings supports existing understanding on IgAN
pathogenesis —namely, that mesangial Gd-IgA1 deposition
promotes matrix formation and mesangial cell proliferation
via complement activation [2]. Moreover, tubular atrophy and
interstitial fibrosis, reflecting chronicity of disease, correlated
with KM55 scores which might be proportional to disease
progression time, reinforcing this relationship. Among clinical
characteristics, BUN, UPCR, diastolic blood pressure, eGFR,
serum albumin, and serum IgA levels were significantly as-
sociated with KM55 score, implying that mesangial Gd-IgA1l
deposition may influence renal impairment, hypertension,
and proteinuria, in line with prior research. Zhang et al. [3]
reported that plasma Gd-IgA1 levels measured via ELISA us-
ing KM55 significantly correlated with serum uric acid and
IgA levels, while Oxford classification variables did not. In the
same study, mesangial KM55 IHC scores showed no significant
correlation with plasma Gd-IgA1 levels, and the relationship
between KM55 scores and clinical variables was not examined
[3]. Conversely, Martin-Penagos et al. [6] found the M and T
scores of Oxford classification correlating with plasma Gd-IgA1
levels. Our study demonstrated a similar relationship at the
IHC level, supporting the potential of KM55 IHC scoring as a
clinical biomarker. Moreover, mesangial Gd-IgA1 deposition,
semi-quantified by KM55 IHC, may have prognostic value in
IgAN. Although the mesangial KM55 score was not significant

https://doi.org/10.4132/jptm.2025.09.17
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in multivariate Cox regression, it emerged as an essential risk
factor for progression to CKD stage 4 and ESRD progression in
univariate Cox and Kaplan-Meier analyses. This predictive val-
ue may partially reflect its association with M and T scores, as
noted in multivariate analysis. Whether KM55 scoring can be
incorporated into the Oxford classification remains uncertain
and requires further validation. Its prognostic utility persist-
ed even after adjusting for initial renal function. While lower
eGFR at baseline was correlated with KM55 scores, KM55 re-
tained prognostic significance for eGFR-25%.

Recent reports have documented several new-onset IgAN
cases during the COVID-19 pandemic, potentially triggered by
vaccines such as BNT162b2 (Pfizer Inc., New York, NY, USA;
BioNTech SE, Mainz, Germany) and mRNA-1273 (Moderna,
Inc., Cambridge, MA, USA). As of October 2022, at least 52
post-vaccination IgAN cases had been reported, suggesting a
possible vaccine-related flare-up [16]. However, the underlying
pathophysiologic mechanisms remain unclear. In our cohort,
KMS55 scores were significantly lower in COVID-19-associated
IgAN cases, though the clinical relevance of this result warrants
further investigation. The number of COVID-19-related cases
was limited. The COVID-19 vaccination may transiently exac-
erbate renal disease, potentially facilitating earlier detection of
IgAN. In our cohort, no patients with COVID-19-related IgAN
progressed to ESRD, CKD stage 4, or experienced eGFR-25%.
These cases were relatively recent and likely lacked sufficient
follow-up duration for renal deterioration. Tang et al. [12] pre-
viously reported that primary IgAN cases exhibited significant-
ly higher KM55 intensity and KM55/IgA ratio using IF. Con-
versely, other studies found no differences in Gd-IgA1 staining
intensity [17], plasma Gd-IgAl levels, IgA1-IgG complexes,
or IF features between primary and secondary IgAN [18]. Re-
garding COVID-19, one cohort study noted significantly lower
eGFR in vaccinated individuals with pre-existing IgAN [19]. A
case report of post-vaccination IgAN revealed mesangial Gd-
IgAl and C3 co-deposition on IF [20]. Another review of 17
post-COVID-19 infection or vaccination IgAN and IgA vascu-
litis cases found most had a regressive course [21]. Long-term
studies are warranted.

This study has several limitations. More extensive sample siz-
es are needed to establish the clinical and prognostic relevance
of KM55 scoring. Inter-observer variability in mesangial KM55
grading is possible. Implementing more quantitative approach-
es, such as digital pathology or artificial intelligence-based scor-

ing, may improve consistency. Although KM55 IHC showed

https://doi.org/10.4132/jptm.2025.09.17
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prognostic potential in univariate Cox analysis, no significant
hazard ratio was observed in the multivariate model.

In conclusion, KM55 ITHC can be a practical tool for pathol-
ogists in evaluating IgAN. It offers significant utility in distin-
guishing IgAN from other glomerular diseases. Moreover, this
study supports the pathophysiological role of mesangial Gd-
IgA1 deposition in IgAN development and subsequent renal
dysfunction. Given its prognostic potential demonstrated here,
KM55 should be considered for integration into the routine

pathological assessment of IgAN, pending further validation.
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Background: Sparganosis is a rare parasitic infection caused by Spirometra species. Although it was relatively common in the past, it is now of-
ten overlooked. In this study, we review cases diagnosed through histopathological examination at a single institution in recent years to raise
awareness of this neglected parasitic disease. Methods: We retrospectively analyzed cases of human sparganosis identified in the pathology ar-
chives of a single institution in South Korea between 2004 and 2025. A comprehensive review was conducted, including demographic data,
clinical features, lesion locations, imaging findings, exposure history (such as dietary habits), and histopathologic findings. Results: A total of 15
patients were identified, including 10 females and 5 males, with a mean age of 65.1 years. Lesions were most commonly located in the lower ex-
tremities and breast. Imaging findings were largely nonspecific, with ultrasonography being the most frequently used modality. In most cases,
clinical suspicion of sparganosis was absent, and excision was performed under the impression of a benign or malignant tumor. Histologically,
variably degenerated parasitic structures were identified within granulomatous inflammation. However, preserved features such as calco-
spherules and tegumental structures facilitated definitive diagnosis. Conclusions: This study underscores the importance of recognizing the
characteristic histopathological features of sparganosis, which can allow for accurate diagnosis even in the absence of clinical suspicion. Al-

though rare, sparganosis remains a relevant diagnostic consideration in endemic regions, particularly in East Asia.

Keywords: Sparganosis; Infection; Parasite diseases

INTRODUCTION

Sparganosis is a rare parasitic infection in humans caused by
the plerocercoid larvae (spargana) of Spirometra species, a
genus of pseudophyllidean tapeworms [1]. Human infection
typically occurs accidentally through the consumption of raw
or undercooked amphibians or reptiles, or via drinking water
contaminated with procercoid-infected copepods [1]. The life
cycle of Spirometra involves multiple hosts, with humans serv-
ing as secondary or paratenic hosts.

Clinically, sparganosis most commonly presents as a slowly

migrating subcutaneous nodule, which may be asymptomatic

or mildly tender [2]. Depending on the site of invasion, sparga-
na can involve the orbit, central nervous system, genitourinary
tract, or visceral organs, sometimes resulting in significant
symptoms. Radiologic studies may provide clues such as calci-
fications, tubular structures, or peritubular changes; however,
these findings are usually nonspecific and rarely diagnostic [3-
6]. Consequently, diagnosis is often made histopathologically
following surgical excision, frequently in the absence of prior
clinical suspicion. This makes diagnosis especially challenging
for pathologists unfamiliar with its characteristic features.
Although rare globally, sparganosis is reported more fre-

quently in East and Southeast Asia, particularly in Korea, Chi-
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na, Japan, and Thailand. In Korea, over 400 cases have been re-
ported in the literature [7-13], although incidence has declined
in recent years, likely due to improvements in public health and
hygiene. Nevertheless, sporadic cases continue to be encoun-
tered.

Most literature consists of case reports or studies of uncom-
mon anatomical involvement, while comprehensive analyses
within defined populations remain limited. In this study, we
present a case series of 15 histologically confirmed cases of
human sparganosis diagnosed at a single institution in Korea
over a 21-year period. This study aims to provide practical di-
agnostic insights for pathologists and to raise awareness of this

neglected parasitic infection.

MATERIALS AND METHODS

A total of 15 cases of human sparganosis diagnosed at Seoul
Metropolitan Government-Seoul National University Boramae
Medical Center between 2004 and 2025 were included in this
study. Two cases previously published as a case report [10] were
also included to provide a comprehensive institutional review.
Clinical data, imaging findings, exposure history (drinking of
unfiltered water or ingestion of raw frog/snakes), and histo-
pathological features were retrospectively reviewed.

Table 1. Summary of clinical profile of patients with sparganosis

Pathology of human sparganosis

RESULTS

Clinical and demographic features

Table 1 summarizes the clinical and histopathologic character-
istics of the 15 patients. The cohort comprised 10 women and 5
men, with a mean age of 65.1 years (range, 46 to 83 years). All
patients were Korean nationals except for one Chinese individ-
ual. Only two patients (13.3%) reported a history of consuming
raw snake or frog meat. The remaining patients denied known
exposures and were unable to recall any relevant risk factors.
Serological testing for sparganum-specific antibody was per-
formed in five patients, of whom four showed positive results
(Table 1). In one spinal cord case, however, the sparganum
enzyme-linked immunosorbent assay (ELISA) was negative
while the cysticercosis antibody was slightly elevated, although

histopathology confirmed sparganosis.

Anatomic distribution and imaging characteristics
Lesions were located predominantly in the subcutaneous tis-
sue, most frequently in the lower extremities (n = 6) and breast
(n = 4), followed by the trunk (n = 2), neck (n = 1), and pubic
region (n = 1). One case involved the spinal canal, and none
involved visceral organs. In most cases, sparganosis was not

clinically suspected; lesions were often interpreted as benign tu-

No. Sex Age(yr) Nation Location Imaging  Recurrences Sp-SSA Hx CcC Clinical diagnosis

1 M 64 Korean Lowerleg  US Yes Pos Yes  Migrating mass Infection

2 F 58 Korean Lowerleg  US No N/A Yes  Fluctuant mass Infection

3 F 74 Korean  Trunk N/A No N/A No  Mass with heating sense  Unknown

4 F 53 Chinese Neck,SC  US, CT No Pos No Mass M. lymphoma

5 F 76 Korean Lowerleg  US, MRI No Pos No  Tender mass Phlebitis

6 M 79 Korean  Spinal cord MRI No Neg® No  Leg numbness Neurogenic tumor
7° F 46 Korean  Breast usS, MMG No N/A No N/A Fat necrosis

8° F 69 Korean  Breast usS, MMG No N/A No N/A Infection

9 M 52 Korean  Trunk us No N/A No N/A Unknown

10 F 57 Korean Lowerleg  N/A No N/A No  Palpable mass Inflammatory nodule
1 F 60 Korean  Breast Us, MMG No N/A No Mass Inflammatory nodule
12 F 70 Korean  Breast Us, MMG No N/A No Mass Benign tumor

13 M 62 Korean  Pubic,SC  CT No N/A No Mass Benign tumor

14 M 73 Korean Lowerleg  US, MRI No N/A No Mass M. lymphoma

15 F 83 Korean Lowerleg  US Yes Pos No  Multiple mass Infection

Nation, Nationality; Sp-SSA, sparganosis serum specific antibody; Hx, history of drinking unfiltered water or ingestion of raw frog/snakes; CC, chief
complaint; US, ultrasonography; Pos, positive; N/A, not assessed; CT, computed tomography; M. lymphoma, malignant lymphoma; MRI, magnetic res-

onance imaging; Neg, negative; MMG, mammography; SC, subcutis.

“Sparganum enzyme-linked immunosorbent assay was negative but cysticercosis antibody was slightly elevated, while histopathology confirmed

sparganosis; "Cases previously reported [10].
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mors, lymphadenopathy, or mesenchymal neoplasms. Ultraso-
nography was the most commonly used imaging modality, typ-

ically revealing nonspecific hypoechoic or tubular structures.

Summary of clinicopathologic findings in representa-
tive cases
The patients exhibited diverse clinical manifestations, often lead-

Yim J etal.

ing to diagnostic confusion. In cases 1 and 2, soft tissue masses
yielded intact or live spargana during surgical excision (Figs. 1, 2).
Case 1 involved a 64-year-old male with a crawling sensation in
both legs and a history of consuming raw snake and frog meat. In
case 2, a 58-year-old female had a long-standing thigh mass since
childhood, with no known exposure history. Case 3 presented

with multiple subcutaneous nodules mimicking benign cysts.

Fig. 1. Case 1. (A) Subcutaneous nodule (arrow). (B) Ultrasonography showing a well-defined serpentine hypoechoic lesion. (C) Gross speci-
men of an elongated whitish plerocercoid worm. (D, E) Histopathological sections showing a thick eosinophilic tequment, muscle fibers, and

calcareous corpuscles.

https://doi.org/10.4132/jptm.2025.10.14
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Pathology of human sparganosis

Fig. 2. Case 2. (A, B) Ultrasonography showing elongated structures with perilesional subcutaneous inflammation in the right inner thigh. (C)
Gross specimen of an ivory-colored tapeworm, 20 cm in length. (D-F) Fibrotic tissue and granulomatous inflammation surrounding parasit-
ic fragments, with recognizable calcareous corpuscles (arrows, far lower right).

Histologic examination revealed several larval structures em-
bedded in the subcutaneous tissue, surrounded by eosinophilic
and giant cell-rich inflammation (Fig. 3). Case 4 involved a neck
mass initially suspected to be malignant lymphoma or metastatic
carcinoma. Surgical excision revealed necrotic larval fragments
with granulomatous inflammation (Fig. 4). Case 5 showed an er-
ythematous, tender, S-shaped linear lesion on the thigh, clinically
resembling phlebitis; histology demonstrated a necrotic worm in
the dermis with microcalcifications and chronic inflammation
(Fig. 5). In case 6, a spinal lesion caused neurologic symptoms
and was radiologically interpreted as a nerve sheath tumor. Sur-
gical resection revealed calcified parasite remnants within a yel-
lowish translucent cystic mass (Fig. 6).

DISCUSSION

Despite improvements in hygiene and public health, sporadic

86

cases of sparganosis continue to occur. Pathologists should
maintain a high index of suspicion for sparganosis in patients
presenting with subcutaneous masses, even in the absence of
a relevant exposure history. In our series, most patients were
elderly women, and only two reported a history of consuming
raw amphibians or reptiles; none had occupations associated
with zoonotic exposure. These observations raise the possibility
of an alternative, previously unrecognized route of infection,
warranting further investigation. Potential routes could include
consumption of undercooked fish or untreated drinking water
and, although less probable, exposure to companion animals.
While domestic dogs and cats are definitive hosts and do not
typically transmit spargana to humans, prior studies from Iran,
China, and Vietnam have reported Spirometra larvae in up to
40% of domestic animals [14-16]. Further population-based
studies are needed to clarify the roles of sex, tissue characteris-
tics, and environmental exposures in sparganosis epidemiology.

https://doi.org/10.4132/jptm.2025.10.14
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Fig. 3. Case 3. (A) Multiple small circular cavities in the subcutaneous tissue. (B) Larval structures surrounded by dense inflammatory cells. (C,

D) Cross-sectioned spargana, readily discernible.

Viable parasites were associated with symptoms such as a
crawling sensation or localized warmth. Most diagnoses relied
on remnants of the parasite, including calcareous corpuscles or
tegumental fragments, rather than intact worms. When resid-
ing in human tissues, particularly confined subcutaneous spac-
es, spargana can cause necrotizing lesions of irregular shape,
granulomas, and fibrosis due to tissue damage from parasite
movement. Irregular or radiating borders of granulomatous
inflammation and abundant eosinophilic infiltration are com-
monly observed in sparganosis and other forms of cutaneous
larva migrans (CLM). However, sparganum larvae display high-
ly characteristic features—including internal calcospherules
and an undulating wavy tegument—which are absent in CLM.

Spargana may survive for extended periods, especially in
immune-privileged sites such as the brain and eyes [17-20],

https://doi.org/10.4132/jptm.2025.10.14

possibly due to reduced immune surveillance. Experimental
studies have demonstrated similar patterns, including variable
preservation of parasite structures, granuloma formation, and
chronic inflammation [21]. These findings correlate with our
human cases, particularly those in which parasites had degen-
erated significantly.

In our series, serological testing was performed in a few pa-
tients. Interestingly, in one case of spinal cord sparganosis, spar-
ganum-specific ELISA yielded a negative result, whereas the
cysticercosis antibody level was slightly elevated. Despite this
discrepancy, histopathological examination confirmed spar-
ganosis. This case highlights the potential cross-reactivity of
ELISA with cysticercosis and underscores the limited reliability
of serological testing in isolation. Therefore, serological results

should be interpreted with caution, particularly in endemic ar-

87



I I J PTM Pathology of human sparganosis

Fig. 4. Case 4. (A) Computed tomography and (B) ultrasonography showing multiple homogeneously enhancing cervical lymph nodes (arrows;
enlarged cervical nodes), suspicious for malignant lymphoma or metastasis. (C) Gross specimen with multiple yellowish cystic cavities. (D-H)
Necrotic nodules containing degenerated worms with scalloped cuticles and cladophores.
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Fig. 5. Case 5. (A) Clinical photograph showing an S-shaped erythematous linear lesion on the inner thigh. (B) Magnetic resonance image
showing a low-signal intensity lesion with peripheral enhancement (arrow indicates the lesion). (C) Ultrasonography showing a 2-cm tubu-
lar lesion in the subcutis (arrows indicate the lesion). (D) Granulomatous inflammation with a focal necrotic center. (E) Parasite embedded

within the cyst.

eas for both sparganosis and cysticercosis, and histopathology
remains the gold standard for definitive diagnosis.

Imaging findings vary by site and stage of infection. Early
lesions or live worms may appear as mobile tubular structures,
whereas older lesions often show nonspecific low-density ar-
eas, calcifications, fibrosis, or cystic changes. Such lesions may
be misdiagnosed as complicated epidermal cysts, organized
abscesses, or post-traumatic pseudocysts. In our series, one pa-
tient with a lateral neck mass (case 3) was initially suspected to
have metastatic lymph node involvement. The most significant
histopathologic diagnostic pitfall is likely confusion with a tu-
berculous lesion due to an acellular necrotic center surrounded
by granulomatous reaction. Histopathological distinction be-
tween sparganosis and cysticercosis may also pose challenges,
especially when specimens are old, fragmented, or degenerated.

In such circumstances, the absence of a bladder wall and fibril-

https://doi.org/10.4132/jptm.2025.10.14

lary stroma and the presence of longitudinal smooth muscle
bundles and calcareous corpuscles are helpful features favoring
sparganosis. Careful recognition of these features is essential to
avoid misdiagnosis, particularly in small biopsy samples.

Subcutaneous sparganosis should be distinguished from other
conditions presenting with nodular lesions, including Kimura
disease. Both entities may appear as slowly enlarging, painless
subcutaneous nodules with marked tissue eosinophilia and reac-
tive fibrosis. However, the absence of characteristic histopatho-
logic features of Kimura disease—such as lymphoid follicular
hyperplasia, eosinophilic microabscesses, and florid vascular
proliferation—together with the presence of larval remnants
embedded in granulomatous lesions, are key clues to spargano-
sis. Awareness of this differential diagnosis is essential for accu-
rate evaluation of subcutaneous nodules in endemic areas.

Although previous reports have consistently documented a
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Fig. 6. Case 6. (A) T2-weighted magnetic resonance image showing a 0.9-cm lesion causing central canal compromise (arrow indicates the
lesion). (B) Intraoperative photograph of a whitish-yellow cystic mass. (C) Histopathological section showing a cystic lesion filled with ne-
crotic debris, surrounded by dense fibrosis and chronic inflammation. (D) Degenerated parasitic fragments with calcified corpuscles, charac-

teristic of sparganum.

male predominance in sparganosis, our series showed a striking
predominance of female patients. This may reflect greater sensi-
tivity in detecting lesions or a higher likelihood of seeking med-
ical attention among women. Additionally, the relatively softer
subcutaneous or soft tissue composition in females could provide
a more favorable microenvironment for Spirometra larvae.
Although sparganosis has become increasingly rare, it re-
mains an important differential diagnosis for subcutaneous
masses, particularly in endemic areas. Most cases are diagnosed
histopathologically, often without prior clinical suspicion. Rec-
ognizing the characteristic histologic features—even in the ab-
sence of intact worms—is essential for accurate diagnosis and

appropriate patient management.
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Background: Spread through air spaces (STAS) has been identified as an invasion pattern in non-small cell lung cancer (NSCLC). This study eval-
uated the association between tumor STAS and various clinicopathological parameters of NSCLC, with emphasis on the prognostic role of STAS.
Methods: We evaluated 96 cases of NSCLC for STAS. STAS-positive cases were graded according to the distance between the edge of the prima-
ry tumor and the furthest STAS, in millimeters, or the number of alveoli separating STAS from the tumor. Results: STAS was observed in 33 pa-
tients (34.4%). In 28 cases, STAS was located in airspaces >3 alveoli away from the primary tumor. In 18 cases, STAS was found in airspaces > 2.5
mm away from the edge of the primary tumor. Morphologically, 18 cases of STAS demonstrated a solid nest pattern, eight showed a micropapil-
lary cluster pattern, and seven exhibited a single-cell pattern. In multivariate analysis, only high tumor grade (p =.001) was independently asso-
ciated with STAS in NSCLC. The presence of STAS (p = .047), lymphovascular invasion (p = .001), positive surgical margin (p =.021), adenocarci-
noma histology (p = .020), and postoperative therapy (p = .049) showed a statistically significant lower overall survival (OS). However, multivari-
ate analyses showed that STAS is not an independent predictor of OS in NSCLC. In addition, STAS-positive cases with an extension of >2.5 mm
had significantly lower disease-free survival (DFS) (p = .018). Conclusions: The findings demonstrated that STAS is independently associated
with a higher tumor grade and appears to have an adverse impact on OS and DFS in the examined subpopulation.

Keywords: Spread through air spaces; Lung neoplasms; Prognosis; Lymphovascular invasion; Jordan

INTRODUCTION

Lung cancer remains a primary cause of cancer-related mortal-
ity worldwide, despite the reported decline in cancer mortality
rates, significantly driven by lung cancer due to early detection
and advances in treatment [1]. Non-small cell lung cancer (NS-
CLC) accounts for about 85% of lung cancer cases. In Jordan,
lung cancer is the third most common cancer in both sexes and

the most common cause of cancer-related mortality in males [2].

Metastasis and invasion are the major prognostic factors in
cancer patients. Invasive mechanisms in lung cancer include
non-lepidic histological patterns and stromal, vascular, lym-
phatic, and pleural invasions. Shiono et al. [3] suggested that
the presence of 10 or more floating clusters of cancer cells in
the airspaces surrounding main tumors in cases of pulmonary
metastasis from colorectal cancer was significantly related to
local recurrence in these patients. Subsequently, Onozato et al.
[4] reported the presence of tumor islands outside the borders
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of the primary tumors in cases of primary lung adenocarcino-
ma (ADC); these islands were located at least a few alveoli away
from the main tumor. Moreover, cases associated with these tu-
mor islands carried a significantly worse prognosis and a high-
er risk of recurrence compared to those without these tumor
islands. In 2015, the concept of spread through air spaces (STAS)
was considered by the World Health Organization (WHO) as a
mechanism of invasion in lung ADC [5] based on a validation
of the concept in two large studies [6,7].

STAS is defined as the spread of single cells, solid nests, or
micropapillary clusters of cancer cells into air spaces in the lung
parenchyma beyond the edge of the primary tumor. The pres-
ence of STAS diagnoses lepidic ADC and excludes a diagnosis
of adenocarcinoma in situ (AIS) or minimally invasive adeno-
carcinoma (MIA) in small tumors [5]. Although most of the
studies investigated the characteristics of STAS in conventional
lung ADC, it has also been described in other primary lung
tumors, including invasive mucinous ADC [8], squamous cell
carcinoma (SqCC) [9], and neuroendocrine tumors [10]. The
reported incidence of STAS in lung cancer ranges between 15%
and 73%, according to different studies and depending on the
different stages of the involved tumors [11-17]. Some studies
found that the presence of STAS was associated with higher
tumor grade, higher tumor stage, lymph node metastasis, high-
grade architectural patterns (micropapillary and solid growth
patterns), absence of lepidic component, pleural invasion, and
lymphovascular and perineural invasion [12-14,16]. More
importantly, several reports indicated that STAS is associated
with shorter overall survival (OS) and recurrence-free survival
(RES) in patients with lung ADC treated with surgery, suggest-
ing its potential role as a significant risk factor for recurrence
[11,18-26]. Different attempts have been made to score STAS
according to the number of floating tumor clusters [27] or the
distance from the edge of the primary tumor [7,14,28]; howev-
er, no consensus has been reached.

Lobectomy has been considered the primary surgical pro-
cedure for early-stage lung cancer. However, depending on the
overall conditions of the patient, sub-lobar resections, includ-
ing wedge resection and segmentectomy, are considered an
acceptable alternative [29,30]. Although there is no consensus
on whether these limited resections increase the risk of regional
recurrence compared to lobectomy in patients with STAS, some
studies reported that sub-lobar resection was associated with a
higher recurrence risk in patients with early-stage lung cancer
who have STAS [22,31,32]. Considering this reported adverse

https://doi.org/10.4132/jptm.2025.10.15
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effect, it appears that STAS-positive patients who receive sub-
lobar resection may benefit from a completion lobectomy or
adjuvant therapy to lower the chance of recurrence. However,
an undocumented observation in Jordanian hospitals indicated
that a majority of surgeons and pathologists do not consider the
prognostic effect of STAS. Hence, this study aimed to assess the
incidence of STAS in NSCLGC, its correlation with various clin-
icopathological variables, and its prognostic value in a subpop-
ulation of Jordanian patients. This may help in the prognostic
stratification of the patients and the determination of the need

for any further treatment.

MATERIALS AND METHODS

Study setting and patients' sample

In this work, we retrospectively collected the data and tissue
samples of the patients who underwent surgical resection of
their primary lung cancer at Jordan Royal Medical Services
(JRMS) and King Abdullah University Hospital (KAUH) be-
tween 2005 and 2024. The inclusion criteria included patients
with a primary lung cancer diagnosis of any stage and any
histological subtype who underwent wedge resection, segmen-
tectomy, lobectomy, or pneumonectomy. The exclusion criteria
included the following: (1) postoperative diagnosis of AIS or
MIA; (2) the utilization of preoperative neoadjuvant therapy;
(3) patients with multiple primary lung tumors; (4) lack of tu-
mor slides or tissue for review; and (5) incomplete clinical and
follow-up data. After applying these criteria, 96 cases (63 from
JRMS and 33 from KAUH) were enrolled. The patients’ rele-
vant clinicopathological parameters, including age, sex, smok-
ing history, tumor location, surgical procedure, histological
subtypes, margin status, pathological stage, and follow-up data,
were obtained from the patients' original medical records and
pathological reports.

The surgically resected lung cancer specimens were fixed
using the conventional fixation method, where the specimens
were immersed and fixed in 10% neutral-buffered formalin
within 5 minutes of the resection. Formalin was injected into
the bronchi or through the pleura until the lung was dilated,
allowing the formalin to permeate the specimen. The fixation
duration ranged from 18 to 48 hours. Paraffin-embedded 4-um
sections, hematoxylin and eosin (H&E)-stained slides of all
cases were thoroughly reviewed by two pathologists to confirm
the histological features and assess other features not includ-
ed in the pathology report (O.A.A.K. and A.A.R.). Tumor
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subtypes were determined according to the WHO guidelines
[5,33]. Grading of the ADC cases was determined based on the
combination of the predominant and the worst architectural
patterns [33,34]. Briefly, tumors predominantly having a lepidic
architecture with less than 20% of high-grade patterns (solid,
micropapillary, cribriform, or complex glands) were classified
as well differentiated ADC (grade 1); tumors predominantly
having acinar and papillary patterns with less than 20% of high-
grade patterns were classified as moderately differentiated ADC
(grade 2), and any ADC with more than 20% of high-grade pat-
terns was categorized as poorly differentiated (grade 3). SqCC
cases were graded as well differentiated (grade 1), moderately
differentiated (grade 2), or poorly differentiated (grade 3),
based on the degree of tumor keratinization, histological, and
cytomorphological features. For the purposes of disease-free
survival (DFS) analysis only, tumor grades were categorized
into two groups: low-grade tumors (including grades 1 and 2)
and high-grade tumors (grade 3), due to the limited number
of patients who experienced recurrence or progression of their
disease. Depending on the time of diagnosis, the stages were
determined according to the seventh and eighth editions of the
American Joint Committee on Cancer (AJCC) TNM classifi-
cation system [35,36]. Positive pleural invasion was defined as
tumor invasion beyond the elastic lamina of the pleura.

Histopathological evaluation of STAS

The H&E-stained tumor sections were independently examined
by two expert pathologists (O.A.A.K. and A.A.R.), who were
unaware of the clinical data, and a consensus was reached in
cases of disagreement. STAS was defined as the presence of tu-
mor cells within the air spaces beyond the edge of the primary
tumor, as previously documented in the literature [37,38]. The
edge of the primary tumor was defined as the outer border of
the tumor, which is clearly appreciated during low-power histo-
logical examination. To reliably assess the presence of STAS, all
selected cases had a circumferential rim of normal lung tissue
surrounding the edge of the tumor in at least one slide. Certain
considerations were taken to avoid confusion with artificially
detached tumor cells that result from section processing. Tumor
cells were considered STAS if they were present continuously
in the air spaces from the tumor edge, and individual isolated
tumor cells or rare tumor clusters found far away from the tu-
mor without spreading continuously were considered artifacts.
Additionally, random tumor clusters scattered across the tissue

surface or located at the edge of the tissue section, along with
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clusters exhibiting jagged edges due to fragmentation or knife
cuts during processing, were also classified as artifacts. Linear
strips of tumor cells that appeared lifted from the alveolar wall
or stroma due to poor preservation, as well as benign-looking
ciliated bronchial cells or pneumocytes, and tumor cell clusters
mixed with ciliated cell strips were similarly considered arti-
facts [6,10,14,28]. Furthermore, tumor cells were distinguished
from alveolar macrophages based on their morphological fea-
tures, where tumor cells exhibited nuclear atypia characterized
by a high nuclear-to-cytoplasmic ratio, hyperchromasia, and
frequent nucleoli. In contrast, macrophages do not show atyp-
ical features; they have small, uniform nuclei with inconspicu-
ous or absent nucleoli and foamy cytoplasm in nonsmokers or
cytoplasmic brown to black pigments in smokers [28].

Three morphological patterns of STAS were appreciated:
(1) single cell pattern composed of discohesive single tumor
cells within the alveoli, (2) solid nest pattern, where clusters
of tumor cells present in the air spaces, and (3) micropapil-
lary cluster pattern, defined as papillary structures without
fibrovascular cores. Initially, the cases were divided into two
groups: STAS-positive and STAS-negative. After that, due to
a lack of consensus on a grading method, STAS-positive cases
were reclassified in various ways to assess the prognostic value
of STAS extension. In the first method, the extension of STAS
was assessed by measuring the distance between the edge of the
primary tumor and the furthest intraalveolar tumor cell clus-
ters in millimeters (mm). Then, the cases were divided into two
groups: group I, where all tumor clusters were present <2.5 mm
away from the tumor, and group II, where any tumor clusters
were present >2.5 mm away from the main tumor [14]. In the
second approach, the number of alveoli between the edge of the
primary tumor and STAS was counted, and cases were catego-
rized into two groups: those with limited spread when <3 alve-
olar spaces separated STAS from the primary tumor, and those
with extensive spread when >3 alveoli separated STAS from the

primary tumor [7].

Statistical analysis

All statistical analyses were performed using IBM SPSS Sta-
tistics ver. 25 (IBM Corp., Armon, NY, USA). OS was deter-
mined from the time of surgery to the time of death or the last
follow-up visit. DFS was measured from the time of surgery
to the time of disease recurrence or progression. OS and DFS
were calculated using the Kaplan-Meier method with the log-

rank test. Multivariate analysis was conducted using a Cox
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proportional hazards regression model to identify independent
prognostic factors associated with OS. Categorical variables
were analyzed using the chi-square test or Fisher’s exact test, as
appropriate. The association between clinicopathological vari-
ables and the presence of STAS was assessed using multivariate
logistic regression, with results reported as odds ratios (OR)
and 95% confidence intervals (CI). A p-value < .05 was consid-

ered statistically significant.

RESULTS

Basic characteristics of patients
The baseline demographic and clinicopathological characteris-

tics of NSCLC patients are summarized in Table 1, categorized

Karsaneh OAA et al.

by STAS status. A total of 96 patients were included in the study
(n = 96). Most patients were males (n = 70, 72.9%), with a me-
dian age of 63 years (range, 26 to 80 years). Sixty-one patients
(63.5%) were current or former smokers. Most tumors (n = 60,
62.5%) were on the right side, and the right upper lobe was the
most common location. Fifty-four patients (56.3%) underwent
lobectomy, while the remainder had sublobar resection. A total
of 18 patients (18.8%) had positive bronchial or parenchymal
margins. Histologically, 61 patients (63.5%) had ADC, 17 pa-
tients (17.7%) had SqCC, and 18 patients (18.8%) had other
lung cancer subtypes. Regarding the histological grade, 16.7%
(n = 16) of the patients had grade 1 tumors, while 47.9% (n =
46) and 35.4% (n = 34) had grades 2 and 3 tumors, respectively.
Just more than half of the patients had pathological stage I or

Table 1. Clinicopathological characteristics of the enrolled patients according to STAS status

) Total STAS status
Variable (n = 96) Present Absent p-value
Age (yr)
<60 36 (37.5) 12 (33.3) 24 (66.7) .868
>60 60 (62.5) 21(35.0) 39 (65.0)
Sex
Male 70 (72.9) 27 (38.6) 43 (61.4) .155
Female 26 (27.1) 6(23.1) 20 (76.9)
Smoking status
Former or current smoker 61 (63.5) 24 (39.3) 37 (60.7) 176
Never-smoker 35 (36.5) 9 (25.7) 26 (74.3)
Tumor side
Right 60 (62.5) 22 (36.7) 38(63.3) 542
Left 36 (37.5) 11 (30.6) 25 (69.4)
Tumor site
RUL 37 (38.5) 13 (35.1) 24 (64.9) .828
RML 7( 2 (28.6) 5(71.4)
RLL 16 (16.7) 7 (43.8) 9 (56.2)
LUL 20 (20.8) 5(25.0) 15 (75.0)
LLL 16 (16.7) 6(37.5) 10 (62.5)
Surgical procedure
Lobectomy 54 (56.3) 17 (31.4) 37 (68.6) 499
Sublobar resection (wedge resection or segmentectomy) 42 (43.7) 16 (38.1) 26 (61.9)
Margin status
Positive 18 (18.8) 9 (50.0) 9 (50.0) 122
Negative 78 (81.3) 24 (30.8) 54 (69.2)
Histological subtypes
Adenocarcinoma 61 (63.5) 27 (44.3) 34 (55.7) 031
Squamous cell carcinoma 17 (17.7) 3(17.7) 14 (82.3)
Other 18 (18.8) 3(16.7) 15(83.3)
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Table 1. Continued

Variable Total STAS status p-value
(n=96) Present Absent

Tumor grade
Grade 1 16 (16.7) 1(6.3) 15(93.7) <.001
Grade 2 46 (47.9) 11 (23.9) 35(76.1)
Grade 3 34 (35.4) 21 (61.8) 13(38.2)

pT stage classification
pl1 48 (50.0) 14 (29.1) 34 (70.9) .513
pl2 26 (27.1) 12 (46.2) 14 (53.8)
pl3 6(16.7) 5(31.3) 11 (68.7)
pT4 5(5.2) 2 (40.0) 3 (60.0)
Not assessable 1(1.0) 0 1 (100)

pN stage classification
pNO 43 (44.8) 13 (30.2) 30 (69.8) .801
pN1 15 (15.6) 5(33.3) 10 (66.7)
pN2 8(8.3) 3(37.5) 5(62.5)
pNx 30(31.3) 12 (40.0) 18 (60.0)

Pathological stage
Stage I, Il 51(53.1) 18 (35.3) 33 (64.7) 313
Stage Ill, IV 17 (17.7) 8 (47.1) 9 (52.9)
NA 28 (29.2) 7 (25.0) 21 (75.0)

Tumor size
<3cm 58 (60.4) 19 (32.8) 39 (67.2) .545
>3 cm 36 (37.5) 14 (38.9) 22 (61.1)
Not assessable 2(2.1) 0 2 (100)

Visceral pleural invasion
Present 23 (24.0) 10 (43.5) 13 (56.5) 291
Absent 70 (72.9) 22 (31.4) 48 (68.6)
Not assessable 3(3.1) 1(33.3) 2 (66.7)

Lymphovascular invasion
Present 30(31.3) 15 (50.0) 15 (50.0) .03
Absent 66 (68.7) 18 (27.3) 48 (72.7)

Necrosis
Present 33 (34.4) 15 (45.5) 18 (54.5) .098
Absent 63 (65.6) 18 (28.6) 45 (71.4)

Predominant growth pattern (ADC cases = 61) 61(100) 27 (44.3) 34 (55.7) 065
Lepidic 9(14.8) 2(222) 7(77.8)
Acinar 34 (55.7) 13(38.2) 21 (61.8)
Papillary 5(8.2) 2 (40.0) 3 (60.0)
Solid 10 (16.4) 7 (70.0) 3(30.0)
Micropapillary 3 (4.9 3 (100) 0

Postoperative chemo/radiotherapy
Yes 38 (39.6) 17 (44.8) 21 (55.2) .084
No 58 (60.4) 15 (25.9) 43 (74.1)

Values are presented as number (%). p < .05 is considered significant.
STAS, spread through air spaces; RUL, right upper lobe; RML, right middle lobe; RLL, right lower lobe; LUL, left upper lobe; LLL, left lower lobe; ADC,
adenocarcinoma.
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II (n = 51, 53.1%). The majority of patients (n = 58, 60.4%) had
a tumor size of 3 cm or less, and a minority of cases had con-
firmed lymph node metastasis (24%). Visceral pleural invasion
was present in 24% of the cases, lymphovascular invasion (LVI)
was identified in 31.3%, and necrosis was found in 34.4% of the
cases. The most frequent histological growth pattern in ADC
cases was the acinar pattern (n = 34, 55.7%), followed by the
solid pattern (n = 10, 16.4%), while the least frequent one was
the micropapillary growth pattern (n = 3, 4.9%). Only 39.6% of

the patients received postoperative chemo/radiation therapy.

STAS presence and association with the clinicopatho-
logical variables in NSCLC

Among the 96 NSCLC samples, STAS was identified in 33 pa-
tients (34.4%). Of these, twenty-eight cases showed extensive
STAS, with tumor cells presenting in airspaces more than three

alveoli away from the primary tumor. In 18 cases, STAS was

Karsaneh OAA et al.

found in airspaces more than 2.5 mm away from the edge of
the primary tumor. Morphologically, eighteen cases of STAS
demonstrated a solid nest pattern, eight demonstrated a micro-
papillary cluster pattern, and seven showed a single-cell pattern.
Representative images of STAS with different morphological
patterns are shown in Fig. 1A-D.

The presence of STAS was more frequently observed in ADC
cases (44.3% vs. 17.7% in SqQCC vs. 16.7% in other subtypes)
and in patients with a history of smoking (39.3% vs. 25.7% in
never-smokers). Moreover, STAS occurrence was more fre-
quent in patients with grade 3 tumors (61.8% vs. 23.9% and
6.3% in grades 2 and 1 tumors, respectively), in patients with
stage III or IV, in patients with positive LVI, positive visceral
pleural invasion, and in tumor cases with necrosis. ADC cas-
es with predominant solid or micropapillary growth patterns
showed the highest frequency of STAS. Interestingly, STAS was

slightly more frequent in sublobar resections (wedge resection

Fig. 1. Representative histopathological images of spread through air spaces (STAS) with different morphological subtypes. (A) STAS in an
adenocarcinoma composed of small micropapillary clusters (circles) located beyond the edge of the primary tumor. (B) Micropapillary clus-
ter pattern. (C) Solid nest pattern. (D) Single-cell pattern.
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or segmentectomy) than in lobectomy cases (38.1% vs. 31.4%).
Among the clinicopathological variables, ADC histological sub-
type (p =.031), grade 3 tumors (p < .001), and presence of LVI (p
=.030) were significantly associated with the presence of STAS;
however, no significant association was found with the other
parameters in the univariate analysis (Table 1).

Furthermore, we performed multivariate logistic regression
analysis on variables that showed a statistically significant asso-
ciation (p < .05) with STAS presence in the univariate analyses.
Only tumor grade remained significantly associated with STAS.
Specifically, with grade 1 as a reference, patients with grade 3
tumors had higher odds of having STAS (OR, 3.994; 95% CI,
0.434 to 36.709; p = .002). In comparison, histological subtype
(using ADC as a reference) and LVI (with absent LVI as a refer-
ence) were not independently associated with STAS (Table 2).

Survival analyses of STAS and other clinicopathologi-
cal variables

The mean OS for the patients was 26 months (range, 0 to 191
months), and the mean DFS was 28 months (range, 0 to 86
months). During the follow-up period, 16 patients (16.7%)
experienced recurrence, comprising six with locoregional re-
currence, nine with distant metastatic recurrence, and one with
both. In NSCLC patients, Kaplan-Meier analysis with a log-
rank test demonstrated a statistically significant lower OS with
the presence of STAS (p = .047), with the mean OS dropping
from 141 months in patients without STAS to 65.4 months
in patients with STAS (Fig. 2A). No statistically significant
difference in OS was identified among different subgroups of
STAS-positive cases, either according to morphology or the dis-
tance of extension. Further, positive surgical margin, LVI, ADC
tumor histology, and postoperative therapy showed statistically

significant associations with lower OS (p = .021, p = .001, p =

Prognostic role of STAS in NSCLC

.020, and p = .049, respectively) (Fig. 2B-E).

In NSCLC patients, the mean DFS rate was slightly lower
in patients with STAS than in those without STAS. However,
no statistically significant difference was identified (p = .681).
Nonetheless, STAS-positive cases with an extension of <2.5 mm
showed statistically significant (p = .018) higher DFS compared
to those with an extension of >2.5 mm (Fig. 2F); however, no
statistically significant difference in DFS was identified using
three alveoli as a cutoff point for STAS extension (p = .953)
(Fig. 2G). Moreover, patients with high-grade tumors and those
who underwent sublobar resection had a statistically significant
lower DFS (p = .044 and p = .032, respectively) (Fig. 2H, I). Of
note, these findings could not be further evaluated in a multi-
variate analysis due to the limited number of cases that experi-
enced disease recurrence or progression.

When we stratified NSCLC cases by different subgroups of
clinicopathological parameters and investigated the impact of
STAS on OS, we found a statistically significant negative impact
of STAS on OS in subgroups with tumor size <3 cm, negative
visceral pleural invasion, and pT1 tumor stage (Fig. 3A-C).
Regarding the surgical procedure, patients who underwent
sublobar resection had lower mean OS and DFS, regardless of
whether they had STAS or not, and no significant difference
was identified.

In the subsequent step, we examined the impact of STAS and
other clinicopathological variables on OS within the cohort of
ADC cases (n = 61). Kaplan-Meier curves with a log-rank test
revealed no statistically significant difference in OS between
STAS-positive and STAS-negative tumors (p > .30). Similarly,
neither the morphological subtype of STAS nor its distance of
extension (<2.5 mm vs. >2.5 mm or <3 alveoli vs. >3 alveoli)
influenced the OS. In contrast, patients whose tumors exhibited

LVI experienced markedly poorer OS (p =.033) (Supplementary

Table 2. Multivariate logistic regression analysis for predicting STAS status

Predictor OR 95% Cl p-value
Histological subtype (reference: ADC) - - 135
SqCC 3.908 0.926-16.493 .064
Other 2.201 0.470-10.317 .566
Tumor grade (reference: grade 1) 001
Grade 2 0.209 0.076-0.575 221
Grade 3 3.994 0.434-36.709 .002
LVI (reference: absent) 0.621 0.219-1.760 370

p < .05 is considered significant.

STAS, spread through air spaces; OR, odds ratio; Cl, confidence interval; ADC, adenocarcinoma; SqCC, squamous cell carcinoma; LVI, lymphovascular

invasion.
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Fig. 2. Kaplan-Meier overall survival (0S) and disease-free survival (DFS) curves according to different clinicopathological parameters in
non-small cell lung cancer patients. (A) The correlation between the OS and spread through air spaces (STAS) status. (B) The correlation
between the OS and margin status. (C) The correlation between the OS and lymphovascular invasion. (D) The correlation between the 0S

and tumor histological subtype. (E) The correlation between the 0S and
extension of STAS from the tumor edge (2.5 mm vs. >2.5 mm). (G) Th
tumor edge (<3 alveoli vs. >3 alveoli). (H) The correlation between DFS
cedure. p < .05 is considered significant.

Fig. S1) and showed a steeper early mortality slope. Other fac-
tors, including tumor grade, pathological stage, and additional
clinicopathological variables, did not convincingly stratify sur-
vival in ADC cases. Due to the limited number of cases that had
disease recurrence or progression in the ADC cohort, no anal-
ysis on DFS was performed. Additionally, for SQCC, the cohort
size was small (n = 17), and only two deaths occurred during the
follow-up period, which rendered the Kaplan-Meier and Cox

proportional hazards regression model analyses unreliable.

https://doi.org/10.4132/jptm.2025.10.15

postoperative therapy. (F) The correlation between the DFS and the
e correlation between the DFS and the extension of STAS from the
and tumor grade. (I) The correlation between DFS and surgical pro-

Prognostic value of clinicopathological variables for
OS in NSCLC patients

We performed Cox proportional hazards regression analyses to
evaluate the prognostic significance of the clinicopathological
variables and to identify potential independent predictors of
OS. Univariate analysis identified several clinicopathological
variables significantly associated with OS. For example, histo-
logical subtype was significantly associated with OS (p = .049);
patients with other histological subtypes of lung cancer had

929



1l JPTM

Prognostic role of STAS in NSCLC

Tumor size <3 cm Negative visceral pleural invasion Tumor stage T1
p=.022 p =.006 p=.024
i I Present 10 [ Present 10 I Present
B Absent B Absent B Absent
08
8 T o8 g o8
1Y) w w
© o6 o o
ﬂZJ g 06 GZJ 06
=] =] =]
] ] ]
S 04 = =
£ IS 0.4 £ 04
E = E
o o (=]
02
02 02
0.0
0 50 100 150 200 00 00
0 50 100 150 200 0 50 100 150 200

Time (mo)

Time (mo)

Time (mo)

Fig. 3. Survival association of spread through air spaces (STAS) in different clinicopathological subgroups. (A) Overall survival (OS) accord-
ing to STAS status within the patient population with tumor size < 3 cm, with negative visceral pleural invasion (B), and with pT1 tumor

stage (C). p < .05 is considered significant.

a significantly lower hazard of death compared to ADC (HR,
0.127; 95% CI, 0.017 to 0.953; p = .045). However, the survival
difference between SqCC and ADC was not statistically signifi-
cant (HR, 0.316; 95% CI, 0.074 to 1.354; p = .121). Additionally,
the presence of LVI (HR, 3.743; 95% CI, 1.613 to 8.684; p =
.002) and positive margin status (HR, 2.644; 95% CI, 1.119 to
6.251; p = .027) significantly increased the risk of death. Other
variables tested in the univariate analysis were not significantly
associated with OS (p > .05). Moreover, variables significant-
ly associated with OS in univariate analysis were included in
the multivariate Cox regression model. In this analysis, only
LVI (HR, 3.143; 95% CI, 1.347 to 7.338; p = .008) and positive
margin status (HR, 2.448; 95% CI, 1.033 to 5.801; p = .042) re-
mained significant independent predictors of poorer OS, while
the histological subtype was not independently predictive of OS
after adjustment for other variables (p = .087) (Table 3).

Prognostic value of clinicopathological variables for
OS in ADC patients

Finally, we conducted a Cox proportional hazards regression
model to further evaluate the prognostic impact of clinicopath-
ological variables, including STAS, for the ADC cohort but not
for SQCC due to an insufficient number of cases and events.
In the univariate analysis, LVI was identified as the only sig-
nificant prognostic factor for OS (HR, 2.559; 95% CI, 1.041 to
6.288; p = .041). Margin positivity showed a strong but non-sig-
nificant trend towards increased mortality (HR, 2.19; p = .097).
In contrast, STAS status—along with its extent, morphological
subtypes, tumor grade, tumor stage, smoking history, and oth-
er variables—did not show an independent association with
mortality (e.g., STAS; HR, 1.474; p = .395) (Table 4). Because
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only one variable (LVI) reached a statistical significance in the
univariate analysis, we did not construct a multivariate model
for the ADC cohort.

DISCUSSION

This study found that STAS is significantly associated with
high histological tumor grade of lung cancer, where high tumor
grade (grade 3) serves as an independent predictor for STAS.
STAS presence, positive surgical margin, LVI, ADC histology,
and postoperative therapy were associated with statistically
significant lower OS in NSCLC cases. However, based on mul-
tivariate analysis, only positive surgical margin and LVI were
identified as independent predictors of poorer OS. Further-
more, STAS was associated with a statistically significant lower
OS in patients with a tumor size of <3 cm, pT1 tumor stage,
and negative pleural invasion.

In the ADC cohort, only LVI showed a statistically significant
lower OS in a univariate analysis, which prevented conducting
a multivariate analysis. Although the mean DEFS rate was slight-
ly lower in patients with STAS than in those without STAS,
no statistically significant difference was identified in NSCLC
cases. However, an extension of STAS > 2.5 mm away from the
edge of the primary tumor, high tumor grade, and sublobar
resection were found to be significantly associated with a lower
DEFS in a univariate analysis.

The incidence of STAS found in this study was 34.4% across
the different histological subtypes, which falls within the range
reported by other studies [10,12,13,16,39-42]. The solid nest
pattern was the most frequently observed (54.5%). STAS was

slightly more frequent in sublobar resections than in lobec-
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Table 3. Cox proportional hazards regression model for overall survival in patients with non-small cell lung cancer

Univariate analysis Multivariate analysis

Variable Reference category HR 95% Cl p-value HR 95% Cl p-value
Age <60 yr 2017 0.793-5.128 A4
Sex Female 0.679 0.267-1.730 .679
Histological subtype (overall) ADC - - 049 087
SqCC ADC 0.316 0.074-1.354 121 0.343  0.080-1.474 151
Other ADC 0.127 0.017-0.953 .045 0.162  0.021-1.215 077
Lymphovascular invasion Absent 3.743 1.613-8.684 002 3.143  1.347-7.338  .008
Margin status Negative 2.644 1.119-6.251 027 2448  1.033-5.801 042
Necrosis Absent 1.272 0.537-3.016 .584
Pathological stage Stage |-l 2.746 0.930-8.107 .067
pN category (overall) pNO - - .396
pN1 pNO 2.162 0.704-6.640 178
pN2 pNO 1.108 0.136-9.021 924
Predominant growth pattern (ADC overall) Acinar - - 222
Solid Acinar 2.706 0.883-8.294 .081
Papillary Acinar 1.057 0.285-3.920 934
Micropapillary Acinar 0.750 0.095-5.946 .786
Lepidic Acinar 0.264 0.034-2.071 .205
pT category (overall) pT1 - - .387
T2 pT1 1.831 0.662-5.064 244
13 pT1 201 0.657-6.161 221
T4 pT1 2.766 0.567-0.724 A7
Smoking status Smoker 0.502 0.197-1.276 147
STAS distance from tumor edge <2.5 mm 0.901 0.287-2.825 .858
STAS from edge of tumor <3 alveoli 0.611 0.159-2.341 472
STAS morphological subtype (overall) Single cells - - .259
Solid nests Single cells 554.268 0.233-1,316,585.998  .111
Micropapillary Single cells 16.782 0.037-7,547.348 .366
STAS status Absent 2.250 0.987-5.129 .054
Surgical procedure Lobectomy 1.635 0.717-3.728 242
Treatment history (adjuvant) Treated 0.441 0.190-1.022 .056
Tumor grade Grade 1 .126
Grade 2 Grade 1 5.786 0.744-45.001 093
Grade 3 Grade 1 8.096 1.041-62.954 046
Tumor location Left 1.122 0.474-2.658 794
Tumor size <3cm 1171 0.512-2.677 .708
Visceral pleural invasion Negative 2.164 0.911-5.141 .080

p < .05 is considered significant.

HR, hazard ratio; Cl, confidence interval; SqCC, squamous cell carcinoma; ADC, adenocarcinoma; STAS, spread through air spaces.

tomy specimens. Interestingly, a completion lobectomy may
potentially be beneficial for these patients with STAS-positive
tumors, reducing the risk of tumor recurrence or progression
[43]. In this study, we found that ADC histology, high histolog-
ical tumor grade, and the presence of LVI were associated with

STAS in the univariate analysis. Further, the multivariate anal-
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ysis proved that high tumor grade is an independent predictor
of STAS. Several studies analyzed the correlation between STAS
and other clinicopathological parameters. Consistent with our
findings, some studies found an association between STAS and
high tumor grade/poor differentiation [4,39,40,44,45] or LVI
[11,27,40,46]. For example, Lee et al. [40] investigated STAS in
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Table 4. Cox proportional hazards regression model for overall survival in patients with adenocarcinoma

Univariate analysis

Variable Reference category IR BT o-value
Age <60 yr 1317 0.525-3.578 519
Sex Female 1.103 0.332-3.663 873
Lymphovascular invasion Absent 2.559 1.041-6.288 041
Margin status Negative 2.190 0.868-5.527 097
Necrosis Absent 2.200 0.837-5.784 110
Pathologic stage Stage |-l 2.121 0.646-6.961 215
pN category (overall) pNO - - 516
pN1 pNO 1.969 0.620-6.961 .250
pN2 pNO 0.000 0.000 983
Predominant growth pattern Acinar - - 222
Solid Acinar 2.706 0.883-8.294 .081
Papillary Acinar 1.057 0.285-3.920 934
Micropapillary Acinar 0.750 0.095-5.946 .786
Lepidic Acinar 0.264 0.034-2.071 .205
pT category (overall) pT1 - - 654
T2 pT1 1.219 0.383-3.880 737
13 pT1 1.833 0.579-5.802 303
T4 pT1 2.040 0.518-8.031 .308
Smoking status Smoker 0.578 0.200-1.518 .266
STAS distance from tumor edge <2.5mm 1.103 0.332-3.663 873
STAS from edge of tumor <3 alveoli 0.725 0.184-2.861 646
STAS morphologic subtype (overall)  Single cells - - AN
Solid nests Single cells 954.001 0.021-44,129,592.574 21
Micropapillary Single cells 17.077 0.004-77,386.721 .509
STAS status Absent 1.474 0.603-3.603 395
Surgical procedure Lobectomy 0.985 0.408-2.382 974
Treatment history (adjuvant) Treated 0.832 0.339-2.039 .668
Tumor grade Grade 1 510
Grade 2 Grade 1 3.226 0.410-25.403 .266
Grade 3 Grade 1 3.361 0.424-26.660 251
Tumor location Left 1.658 0.634-4.337 303
Tumor size <3cm 1.163 0.480-2.816 738
Visceral pleural invasion Negative 1.232 0.478-3.175 .666

p < .05 is considered significant.

HR, hazard ratio; Cl, confidence interval; STAS, spread through air spaces.

316 cases of lung ADC and found that STAS was significantly
associated with high-grade histology, LVI, higher stage, and
lymph node metastasis. Uruga et al. [27] studied 208 cases of
early-stage lung ADC and found a significant association be-
tween higher STAS and LVI, solid predominant ADC, visceral
pleural invasion, and tumor size > 10 mm. Other studies also
reported a significant association between STAS and different
parameters, including micropapillary growth pattern, nodal

involvement, higher stage, perineural invasion, and pleural
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invasion; however, none of these variables were associated with
STAS in our work [12,16,31,39,40,47]. It is possible that we
were not able to identify a statistically significant association
between STAS and these variables due to the small sample size.
The association of STAS with poor OS and DFS has been
extensively suggested. A meta-analysis involving 3754 patients
demonstrated a significant association between STAS and worse
RFS and OS in NSCLC [26]. Another meta-analysis, including

47 studies, also concluded that STAS presence is associated with
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poor prognosis [48]. A study by Chen et al. [23] reported that
STAS is significantly associated with lower OS and RFS in stage
IB NSCLC. Another study included STAS among the patholog-
ical features that adversely affect the OS and progression-free
survival (PFS) in stage I lung ADC [49]. Another interesting
study reported that STAS presence negatively impacts OS and
RFS in stage IB patients. Furthermore, it observed that adjuvant
chemotherapy improves RFS outcomes in stage IB STAS-pos-
itive patients with high-risk recurrence factors, such as LVI,
pleural invasion, and poor differentiation [50]. Moreover, other
studies included lung cancer cases of stages I-IV and reported
the same adverse effect of STAS on survival [6,7,16,19,21,40,51-
54]. On the other hand, a recent study did not find an associ-
ation between STAS and worse survival or higher recurrence
rates; however, they attributed this to a limited follow-up dura-
tion [55].

Herein, we included NSCLC cases of stages I-IV and found
a significant association between STAS and lower OS but not
DFS in a univariate analysis. However, based on our multivar-
iate analysis, STAS was not an independent predictor of prog-
nosis, which is likely due to the small sample size. Furthermore,
STAS did not reveal an independent prognostic impact on OS
in univariate analysis in the ADC cohort. In line with previous
results, we found that STAS presence has a negative impact on
OS in subgroups of early-stage lung cancer, defined as tumor
stage pT1, tumor size < 3 cm, and negative visceral pleural in-
vasion.

Due to a lack of consensus on measuring the extension of
STAS in lung cancer, in this study, we measured the distance
between STAS and primary tumor in mm using a cut-off value
of 2.5 mm and according to the number of alveoli using a cut-
off value of 3 alveoli. In both grading methods, no significant
association was found between STAS extension and OS, either
in the entire patient cohort or the ADC cohort; however, STAS
extension of >2.5 mm from the edge of the primary tumor was
significantly associated with lower DFS in the NSCLC cohort.
However, this finding could not be further assessed in a mul-
tivariate analysis due to the small number of cases showing
disease recurrence or progression. Few studies have assessed
the prognostic significance of STAS distance using different
methodologies to define STAS distance. Han et al. [14] mea-
sured the distance between the edge of the primary tumor and
the furthest STAS in mm and observed that STAS II, defined
as STAS > 2.5 mm away from the edge of the primary tumor, is

an independent poor prognostic factor for recurrence in stage I
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lung ADC, regardless of the extent of resection. Hashinokuchi
et al. [53] categorized cases of STAS as limited (<1 mm) and
extended (>1 mm) based on the median maximum spread dis-
tance between the edge of the primary tumor and the furthest
STAS and demonstrated that extended STAS was an indepen-
dent prognostic factor for OS and RFS. On the other hand,
Yanagawa et al. [9] used a cutoff value of 0.8 mm between the
edge of the primary tumor and the furthest STAS and found no
difference in OS or RFS between near STAS (<0.8 mm) and far
STAS (>0.8 mm).

Similar to the results of this study, Warth et al. [7], Lu et al.
[42], Kadota et al. [28], and Dai et al. [41] defined STAS dis-
tance as the number of alveoli between the edge of the main
tumor and the furthest STAS, and using a cutoff point of 3 alve-
oli between limited STAS (< 3 alveoli) and extensive STAS (>3
alveoli), they reported no significant prognostic impact of STAS
distance in NSCLC. Taken together, these results suggest that
the prognostic significance of STAS distance depends on the
methodology used and how the cutoff value was determined.
Therefore, further research is warranted to explore STAS's bi-
ological perspectives, establish a method to measure STAS dis-
tance, and determine the clinically significant cutoff value.

Emphasizing the significance of STAS, a large staging study
of lung cancer conducted by the International Association
for the Study of Lung Cancer (IASLC) supported the recom-
mendation to include STAS as a histological descriptor for the
Ninth Edition of the TNM Classification of Lung Cancer [56].
Additionally, the IASLC aims to gather more information in
the coming years to assess the relative importance of STAS in
comparison to LVI and visceral pleural invasion in the staging
of lung cancer, which will aid in the development of the 10th
edition of the TNM stage classification.

While our study's strength includes using different classifi-
cations of STAS and being the first study to investigate STAS in
lung cancer among Jordanian patients, it has several potential
limitations. First, this is a retrospective study, which may intro-
duce some selection bias, and some data were missing, which
could have negatively affected the results and sample size. Sec-
ond, the small sample size may have influenced the results, and
furthermore, it hindered the proper stratification and analysis
of the data based on histological subtypes or different stages,
which may have introduced biases in the results, given the dif-
ferent prognoses associated with different tumor histological
subtypes or other parameters. Third, formalin fixation may

have affected STAS distance. Finally, due to the small number
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of patients who experienced disease recurrence, no further DFS
analysis was performed.

In conclusion, our data indicated that a high histological
grade is an independent predictor of STAS in lung cancer. Ad-
ditionally, the results suggested that STAS may have a negative
impact on prognosis. However, it is essential to consider that
STAS may be merely a characteristic of high-grade tumors
rather than a significant, independent prognostic indicator.
Therefore, additional extensive multicenter and prospective
studies are necessary to clarify the prognostic role of STAS in
lung cancer and to establish a clinically significant cutoff value
for STAS distance. This may help clinicians in the prognostic
stratification of patients and inform decisions regarding further

treatment.
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Background: Prostate-specific membrane antigen (PSMA) is expressed in the neovasculature of various malignancies, such as colorectal cancer
(CRC) and hepatocellular carcinoma (HCC). However, PSMA expression in hepatic CRC metastasis has not been studied in detail. Methods: The
PSMA expression in primary CRC and corresponding hepatic metastasis was evaluated by immunohistochemistry in a metastatic CRC cohort (n
= 56), which was divided into subgroups according to treatment history and timing of metastasis. Demographic and histological characteristics
of primary CRC were collected and their relationships with PSMA expression were examined. Additionally, the PSMA expression in resected HCC
(n = 76) was compared with that of hepatic CRC metastasis. Results: In primary CRC, PSMA level showed a positive association with tumor size.
Lower PSMA expression in hepatic metastasis was associated with higher primary CRC grade, advanced pTNM stage at the time of CRC resec-
tion, presence of tumor deposit, and unresectability of metastatic lesion. PSMA expression in primary CRC correlated with that in hepatic metas-
tasis only in concurrent and untreated metastasis subgroup. PSMA expression in primary CRC and hepatic metastasis, regardless of treatment
history and timing of metastasis, was not significantly different from that of HCC. Conclusions: Several adverse pathological features of primary
CRC were associated with a lower PSMA expression in hepatic metastasis. PSMA expression in hepatic metastasis correlated with that of primary

CRC only in concurrent and untreated subgroup. Primary HCC and hepatic CRC metastasis show comparable levels of PSMA expression.

Keywords: PSMA; Colorectal neoplasms; Liver neoplasms/secondary; Hepatocellular carcinoma; Immunohistochemistry

INTRODUCTION

Prostate-specific membrane antigen (PSMA) is a transmem-
brane protein first identified in prostate cancer cell line LNCaP
[1]. Although its role in cancer development is unclear, PSMA
expression in prostate cancer is significantly higher than in
benign prostate tissue [2]. PSMA-directed approaches, one of
which was approved by the Food and Drug Administration for
use in metastatic castration-resistant prostate cancer, are re-
garded as promising novel treatments for prostate cancer [3].
Notably, immunohistochemistry (IHC) studies reported
PSMA expression in neovasculature of various non-prostatic
malignancies [2,4]. Moreover, PSMA expression was found to
have diagnostic and prognostic significance in non-prostatic

cancers, including hepatocellular carcinoma (HCC) and col-
orectal cancer (CRC). Compared to conventional CD34 IHC,
PSMA IHC can differentiate HCC from benign hepatic lesions
more accurately [5]. HCC patients with higher PSMA expres-
sion have more aggressive histology and worse prognosis [6,7].
While higher PSMA expression in CRC tumor neovasculature
was associated with several unfavorable clinical and histologic
features [8,9], our previous study [10] suggested a contrasting
trend.

Due to its distinct expression profile, PSMA serves as a di-
agnostic and therapeutic target for various non-prostatic solid
cancers [11], such as HCC and CRC. PSMA-positron emission
tomography computed tomography (PET/CT) had a compa-
rable [12] or higher [13] detection rate for HCC than conven-
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tional fluorodeoxyglucose-PET/CT. A series of case reports
have described primary and metastatic CRC being incidentally
detected by PSMA-PET/CT [14-17]. Additionally, preliminary
analysis suggested that as in prostate cancer patients [18],
PSMA-PET/CT radiotracer uptake in HCC patients reflects
PSMA THC results [19], which suggests IHC studies can pro-
vide insight into the potential applicability of PSMA theranos-
tics in non-prostatic cancers.

Liver is the most common site for CRC metastasis [20]. 20%
of CRC patients have a distant metastasis at diagnosis [21], and
30%-50% of patients develop hepatic metastasis at some time
point [22]. Therefore, considering its prevalence, a detailed
investigation of PSMA expression in hepatic CRC metastasis
could advance the understanding of the disease and support
the development of novel treatments. However, currently, there
are no comprehensive studies examining PSMA expression and
its association with clinical and pathological features in hepatic
CRC metastasis. Pilot studies reported that most liver metasta-
sis in CRC patients were PSMA (+), with identical PSMA stain-
ing pattern and degrees to that of primary CRC from the same
patient [8].

This study aims to evaluate PSMA expression in hepatic
CRC metastasis. CRC patients who underwent primary CRC
resection without neoadjuvant therapy (n = 56) and with he-
patic metastasis were identified and grouped by treatment
history (untreated subgroup; n = 47 and treated subgroup; n =
9, see Materials and Methods below) and timing of metastasis
(concurrent metastasis subgroup; n = 41 and metachronous
metastasis subgroup; n = 15, see Materials and Methods below).
Clinicopathological features associated with PSMA expression
in primary CRC and hepatic metastasis were identified. PSMA
expression in primary CRC and hepatic metastasis were exam-
ined to assess their possible correlation. Since PSMA-targeted
imaging has shown some promise in HCC, PSMA expression in
hepatic CRC metastasis and HCC were compared in an attempt
to examine whether such modalities could be applied in hepatic
CRC metastasis. To improve readability, hepatic CRC metasta-
sis is referred to as hepatic metastasis in the main text.

MATERIALS AND METHODS

Study populations
The study cohort includes 56 patients with CRC who under-
went primary surgical resection without neoadjuvant therapy at

Albany Medical Center (AMC) with concurrent or metachro-
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nous hepatic metastasis. Cases with available tumor tissue were
included. The timing of metastatic tissue sampling was either
synchronous (n = 41) or metachronous (metastasis was not
detected at the time of initial staging work-up and CRC resec-
tion; n = 15) relative to the CRC resection. Hepatic metastases
were sampled by Tru-cut/wedge biopsy (n = 23) or resection (n
= 33). Patients who underwent needle core biopsy for their he-
patic metastasis by vascular and interventional radiology were
excluded.

Fig. 1 outlines the patient cohorts, subgroups, and analyses
presented in this study. All primary CRC were untreated at
the time of resection. Three sets of subgroup analysis were
conducted: (1) untreated (n = 47; biopsied or resected) vs. che-
motherapy-treated (n = 9; resected following chemotherapy)
hepatic metastasis, (2) concurrent (n = 41) vs. metachronous (n
= 15) metastasis, and (3) untreated and concurrent metastasis (n
= 34) vs. treated and/or metachronous (n = 22) metastasis. The
rationale for this grouping was based on our observation that
tumor characteristics and treatment status are associated with
PSMA expression in CRC [10].

Clinical data were extracted from electronic medical records,
which included age, sex, colorectal tumor location, tumor size,
and survival outcomes from the time of CRC resection. For he-
patic metastasis, presence of multifocal hepatic metastasis, size
of hepatic lesion, tissue acquisition method, operability as de-
termined by surgeon and timing of tissue retrieval were record-
ed. Demographics, primary CRC characteristics, and hepatic
metastasis characteristics by treatment status are summarized
in Table 1. For the control HCC group, the previously described
cohort of 76 HCC patients who underwent hepatic resection in
AMC from 2003 to 2019 was used [5].

Histologic review

Hematoxylin and eosin-stained slides of primary CRC and
corresponding hepatic metastasis were retrieved for histologic
review. Primary CRC was graded according to American Joint
Committee on Cancer grading criteria. Examined histologic
parameters included pT category, pN category, pTNM stage
at the time of primary CRC resection, the number of positive
lymph nodes, tumor deposits, tumor budding score, presence
of precursor lesions, tumor-stroma ratio, lymphovascular inva-
sion, perineural invasion, and primary CRC resection margin.
For each case, representative tumor block was selected for IHC.
When available, sections harboring tumor-benign tissue junc-

tion were selected.

https://doi.org/10.4132/jptm.2025.10.20
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Fig. 1. Schematic diagram of the patient cohorts, subgroups, and analyses. CRC, colorectal cancer; HCC, hepatocellular carcinoma; PSMA,

prostate-specific membrane antigen; NA, not available.

PSMA and CD34 IHC analysis

The ratio of PSMA expression to that of pan-endothelial mark-
ers, such as CD31 or CD34, has been used as a part of scoring
systems [23,24] or a direct measure [25-27] of vascular PSMA
expression. In our laboratory, CD34 staining was more robust
and easier to interpret than CD31. The PSMA/CD34 ratio, as-
sessed by visual estimation (H.L.), was used as a score of PSMA
expression. The ratio was categorized as high (=50%) and low
(<50%) expression for survival analyses, consistent with the
threshold used in a previous study of primary CRC across all
stages [10]. PSMA and CD34 IHC were performed on 5-pm-
thick formalin-fixed paraffin-embedded tissue sections from
the selected blocks using the same antibodies, protocols and de-
tection Kkits as described before [5] (PSMA: 1D6, mouse mono-
clonal, 1:25, Novocastra, Leica, Buffalo Grove, IL, USA; CD34:
QBEnd/10, mouse monoclonal, Ventana Medical Systems, Inc.,
Tucson, AZ, USA). Staining was carried out with Discovery Ul-
tra Ventana System and OptiView DAB Detection Kit (Ventana
Medical Systems, Inc.). Human prostate tissue and tonsillar
tissue served as positive controls for PSMA and CD34 IHC,
respectively. Benign colon and liver tissue from every inspected
slide was PSMA-negative. Representative PSMA and CD34 IHC

https://doi.org/10.4132/jptm.2025.10.20

images of hepatic metastases and their corresponding primary
CRCs are shown in Figs. 2 and 3.

Statistical analysis

Statistical analysis was performed using R version 4.3.3 (R Foun-
dation for Statistical Computing, Vienna, Austria). Threshold
for statistical significance was set as p-value < .05. Each contin-
uous variable was assessed by Shapiro-Wilk test, with p > .05 as
a cutoff for assuming normal distribution. The relationship with
the PSMA/CD?34 ratio and dichotomous variables were analyzed
using the Wilcoxon rank-sum test, ordinal and continuous vari-
ables using Kendall’s tau (1), and multi-level categorical variables
using the Kruskal-Wallis test. Clinicopathological characteristics
according to treatment history were assessed using the Wilcox-
on rank-sum test and Fisher’s exact test.

Cox proportional hazards (PH) model was used for the time-
to-event analysis of overall survival (OS) and recurrence-free
survival (RFS) for concurrent metastasis cases. Metachronous
metastasis cases were excluded from the time-to-event analysis.
Goodness-of-fit test with p > 0.05 was considered to meet the
PH assumption. Hazard ratio (HR) and 95% confidence inter-

val (CI) for each Cox PH model was reported. Representative
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Table 1. Clinicopathological characteristics of patients with hepatic metastasis

PSMA in hepatic CRC metastasis

Clinical characteristic

All patients (n = 56)

Previously untreated
patients (n = 47)

Chemotherapy-treate
patients (n = 9)

d p-value (previously untreated
patients vs. chemotherapy
treated patients)

Demographics
Sex
Female
Male
Age (yr)
Median (range)
Mean
Treatment status
Untreated
Treated
Primary CRC characteristics
Primary CRC size (cm)
Median (range)
Mean
Location’
Right
Left
Rectum
Grade®
1
2
3
pT category
2
3
4
pN category
0
1
2
pTNM stage
|
Il
11l
v
Tumor deposit
Absent
Present
Lymphovascular invasion
Absent
Present
Perineural invasion
Absent
Present

28 (50.0)
28 (50.0)

59 (40-87)
59.5

47 (83.9)
9(16.1)

45(1.4-13.5)
5.2

26 (46.4)
5(8.9)
25 (44.6)

2 (3.6)
44 (78.6)
10(17.9)

3(5.4)
35(62.5)
18 (32.1)

10 (17.9)
18 (32.1)
28 (50.0)

59 (40-87)
58.8

NA

4.5(1.4-13.5)
5.2

21 (44.7)
5(10.6)
21 (44.7)

65 (50-75)
63.0

NA

4.5 (3.0-9.0)

469

173

NA

.858

875

.584

.386

951

.686

.703

470

073

110
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Table 1. Continued
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Clinical characteristic

Al patients (n = 56)

Previously untreated
patients (n = 47)

p-value (previously untreated
patients vs. chemotherapy
treated patients)

Chemotherapy-treated
patients (n = 9)

Primary CRC margin
Negative
Positive

Tumor-stroma ratio
Stroma low
Stroma high

Precursor lesion
Absent
Present

Tumor budding score
1
2
3

No. of tumor buds
Median (range)
Mean

No. of positive lymph nodes
Median (range)
Mean

No. of tumor deposits
Median (range)
Mean

Hepatic metastasis characteristics

No. of hepatic metastasis
Single
Multiple

Hepatic metastasis size (cm)
Median (range)
Mean

Tissue acquisition method
Biopsy
Resection

Operability
Operable
Inoperable

Tissue acquisition time
Synchronous
Asynchronous

50 (89.3)
6(10.7)

18 (32.1)
38 (67.9)

36 (64.3)
20(35.7)

29 (51.8)
15 (26.8)
12 (21.4)

4 (0-23)
5.8

3.5(0-13)
3.4

2(0-13)
2.71

27 (48.2)
25 (44.6)
NA =4
2.9 (0.6-22.5)
3.5

23 (41.1)
33(58.9)

34 (60.7)
22(39.3)

41(73.2)
15 (26.8)

45(95.7)
2(4.3)

26 (55.3)
14 (29.8)
7(149)

3(0-17)
4.9

4(0-13)
3.5

2 (0-13)
29

21 (44.7)
22 (46.8)
NA =4
2.7 (0.6-22.5)
35

5 (55.6) 004
4(44.9)
4(44.9) 448
5 (55.6)
5 (55.6) 707
(44.4)
3(333) .058
1011.1)
5 (55.6)
11 (0-23) 072
10.4
2(0-9) 777
3.0
2(0-5) 891
20
4 (44.4) >99
5 (55.6)
32(1-8) 513
36
0 007
9 (100)
9 (100) .008
0
7 (77.8) >99
(22.2)

Values are presented as number (%) unless otherwise indicated.

CRC, colorectal cancer; NA, not applicable,

*Percentages for subgroups may not sum to 100 due to rounding.

https://doi.org/10.4132/jptm.2025.10.20
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PSMA in hepatic CRC metastasis

Fig. 2. Representative images for CD34 (C, D) and prostate-specific m.2mbrane antigen (PSMA) (E, F) immunohistochemistry in primary col-
orectal cancer with high PSMA/CD34 ratio (A, C, E) and wedge biopsy of corresponding hepatic metastasis (untreated) (B, D, F).

values for continuous variables were range, mean, and median.
Categorical variables were reported as frequencies and percent-

ages (%).

RESULTS

PSMA expression in primary CRC and hepatic metas-
tasis

The summary statistics of the PSMA/CD34 ratio for the entire
cohort, as well as subgroups stratified by treatment status and
timing of metastasis, as shown in Fig. 1, are outlined in Table
2. In the entire cohort (n = 56), the PSMA/CD34 ratio in pri-
mary CRC had a mean of 27.1 (range, 0 to 85.0) and a median
of 20.0. For hepatic metastasis, the mean was 29.2 (range, 0 to
95.0), with a median of 20.0.

112

PSMA expression in primary CRC and clinicopatho-
logical features

The associations between the clinicopathological parameters
and PSMA expression in the primary CRC are summarized in
Table 3. At the time of CRC resection, 1 (2%) case was pTNM
stage I, two (4%) were II, 12 (21%) were III, and 41 (73%) were
IV (Table 1). Patients with larger CRC (p = .013, T = 0.241) had
higher PSMA expression.

PSMA expression in hepatic metastasis and clinico-
pathological features: entire cohort

The associations between the clinicopathological characteristics
and the PSMA expression in the hepatic metastasis are sum-
marized in Table 4 and Supplementary Table S1. In the entire
cohort (n = 56), the PSMA expression in hepatic metastasis
was lower in high grade primary CRC (p = .005, t = -0.318),

https://doi.org/10.4132/jptm.2025.10.20



1l JPTM

Park E et al.

Fig. 3. Representative images for CD34 (C, D) and prostate-specific membrane antigen (PSMA) (E, F) immunohistochemistry in primary col-
orectal cancer with low PSMA/CD34 ratio (A, C, E) and resected corresponding hepatic metastasis (untreated) (B, D, F).

higher pTNM stage at the time of CRC resection (p = .020, T =
-0.262) and the presence of tumor deposit (p = .037). Although
PN stage was not related to PSMA levels, the presence of nodal
involvement (pNO vs. pN1-2) was marginally associated with
a lower PSMA level (p = .065) in hepatic metastasis. Regarding
the characteristics of hepatic metastasis, biopsy (p = .004), in-
operable lesions (p = .005), and lesion acquired synchronously
with CRC resection (p = .024) were associated with lower
PSMA expression in hepatic metastasis. Prior chemotherapy
did not have a significant impact on PSMA expression in hepat-
ic metastasis (p = .653). Boxplots and scatterplots for variables
showing significant associations with PSMA expression in pri-
mary CRC and hepatic metastasis are presented in Supplemen-

tary Fig. SI1.

https://doi.org/10.4132/jptm.2025.10.20

PSMA expression in hepatic metastasis and clinico-
pathological features: grouped by treatment status

In the untreated subgroup (n = 47), high grade primary CRC
(p = .032, T = -0.267), higher pTNM stage at the time of CRC
resection (p =.048, T = -0.244), the presence of tumor deposit (p
=.036), biopsy (p = 0.004), and inoperable metastasis (p = .005)
were significantly associated with lower PSMA expression in
hepatic metastasis. Patients with nodal involvement (p = .051)
tended to exhibit lower PSMA expression. In the chemothera-
py-treated patients (n = 9), older age was associated with higher
PSMA expression in hepatic metastasis (p = .035, T = 0.572).
Treated patients with higher primary CRC tumor grade tended
to exhibit lower PSMA expression in hepatic metastasis; how-

ever, the association was marginal (p = .055)
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Table 2. PSMA expression in study population

Treated and/or meta-
(n=22)

concurrent metastasis  chronous metastasis

(n=34)

Untreated and
NA =1

Metachronous
metastasis (n = 15)

(n=41)

=9)

Previously untreated Chemotherapy-treated Concurrent metastasis
patients (n

patients (n = 47)

All patients
(n=56)

PSMA/CD34 ratio

NA=1

NA=1

NA=1

Primary CRC

25
20 (0-80.0)

27.8 238 27.9 25.1 28.5
15.0 (2.0-70.0) 17.5 (0-85.0)° 20.0 (0-80.0) 20 (0-85.0)°

20.0 (0-85.0)"

27.1
20.0 (0-85.0)°

Mean

Median (range)
Hepatic metastasis

36.7
27.5 (0-95.0)

244
10.0 (0-90.0)

43.1
40.0 (2-95.0)

24.2
10.0 (0-90.0)

30.2
20.0 (0-80.0)

PSMA, prostate-specific membrane antigen; CRC, colorectal cancer; NA, not applicable/available.

29.0
*PSMA expression could not be determined in 1 case due to technical difficulties.

20.0 (0-95.0)

29.2
20.0 (0-95.0)

Mean

Median (range)

PSMA in hepatic CRC metastasis

PSMA expression in hepatic metastasis and clinico-

pathological features: grouped by timing of metastasis
In the concurrent metastasis subgroup (n = 41), lower PSMA
expression in hepatic metastasis was associated with higher
CRC grade (p = .006, T = -0.372). However, regarding hepatic
lesions, biopsy specimens (p = .045) and inoperable lesions (p
=.049) were associated with lower PSMA expression in hepatic
metastasis. In metachronous metastasis subgroup (n = 15), no
significant associations were found between PSMA expression

in hepatic metastasis and clinicopathological characteristics.

PSMA expression in hepatic metastasis and clinico-
pathological features: concurrent and untreated me-
tastasis vs. metachronous and/or treated metastasis

In the concurrent and untreated metastasis subgroup (n = 34),
negative associations between higher primary CRC grade (p
=.036, T = -0.314), biopsy specimens of hepatic lesions (p =
.036), inoperable lesions (p = .040), and PSMA expression in
hepatic metastasis were maintained. In contrast, in metachro-
nous and/or treated subgroup (n = 22), PSMA expression in
hepatic metastasis was not associated with any of the aforemen-
tioned clinicopathological parameters.

PSMA expression in primary CRC and concurrent
hepatic metastasis vs. survival outcomes

Results for survival analysis are outlined in Supplementary
Table S2. PSMA expression was grouped into PSMA-high
(PSMA/CD34 ratio > 50%) and PSMA-low (PSMA/CD34 ratio
< 50%, see Materials and Methods). In concurrent metastasis
cases, PSMA expression in primary CRC was not associated
with OS (HR, 2.154; 95% CI, 0.891 to 5.204; p = .088) and RFS
(HR, 5.480; 95% CI, 0.496 to 60.52; p = .165). Likewise, PSMA
expression in the concurrent hepatic metastasis subgroup was
not associated with OS and RFS (OS: HR, 0.546; 95% CI, 0.189
to 1.578; p = .264; RFS: HR, 0.348; 95% CI, 0.041 to 2.961; p =
.334). Similarly, no association was found in the concurrent and
untreated subgroup (OS: HR, 0.441; 95% CI, 0.131 to 1.490; p
=.188, RFS: HR, 0.429; 95% CI, 0.046 to 4.003; p = .458). Sen-
sitivity analyses using different cutoffs showed no significant
association between PSMA expression in hepatic metastasis
and prognosis (Supplementary Table S3). Kaplan-Meier plots
and corresponding p-values from log-rank test are outlined in

Supplementary Fig. S2.
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Table 3. Associations between clinicopathological characteristics of
primary CRC and hepatic metastasis vs. PSMA expression in primary

CRC

Characteristic

PSMA/CD34 ratio (n = 56)

Mean Median (range) p-value
Demographics
Sex
Male 31.0 20 (2-85) .196
Female 233 17.5(0-80)
Age 069 (t=-0.176)
Treatment status
Untreated 27.8 20 (0-85) .873
Treated 238 15 (2-70)
Primary CRC characteristics
Primary CRC size (cm) 013 (t=0.241)
Location
Right 233 15(2-80) .530
Left 38.0 20 (15-80)
Rectum 28.7 20 (0-85)
Grade
1 4.5 45(2-7) 457 (t=0.085)
2 27.7 20 (0-85)
3 289 17.5(2-70)
pT category
2 36.7 50 (0-60) .227 (t=0.137)
3 229 15 (0-85)
4 33.6 25 (0-80)
pN category
0 38.0 35(0-80) .892 (t=0.015)
1 189 12.5(0-60)
2 28.6 20 (0-85)
pTNM stage at time of
CRC resection
1 0 0(0-0) .851 (t=0.021)
2 50.0 50 (20-80)
3 230 20 (2-70)
4 279 17.5(0-85)
Tumor deposit
Absent 29.4 20 (0-80) .732
Present 26.0 20 (0-85)
Lymphovascular invasion
Absent 26.0 20 (0-80) .715
Present 27.7 20 (0-85)
Perineural invasion
Absent 23.1 15(0-80) .173
Present 31.6 25 (2-85)
Primary CRC margin
Negative 26.0 20 (0-85) .371

https://doi.org/10.4132/jptm.2025.10.20
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Characteristic

PSMA/CD34 ratio (n = 56)

Mean Median (range) p-value
Positive 362 37.5(2-70)
Tumor-stroma ratio
Stroma high 28.3 15(0-85) .935
Stroma low 24.7 20 (0-60)
Precursor lesion
Absent 30.4 20 (0-85) .308
Present 214 17.5(0-80)
Tumor budding score
1 29.5 20 (0-85) .892 (t = -0.015)
2 18.5 15 (0-40)
3 324 20 (2-80)
No. of tumor buds 327 (t=-0.098)
No. of positive lymph .397 (1= 0.086)
nodes
No. of tumor deposits .580 (1 = 0.056)
Hepatic metastasis
characteristics
No. of hepatic metastasis
Multifocal 30.1 20 (2-85) .255
Single 243 20 (0-80)
Hepatic metastasis size .508 (t = -0.067)
(em)
Tissue acquisition method
Biopsy 29.0 15 (0-85) >.99
Resection 25.8 20 (0-80)
Operability
Inoperable 303 20 (0-85) .654
Operable 25.0 20 (0-80)
Tissue acquisition time
Concurrent 279 17.5(0-85) .864
Metachronous 25.1 20 (0-80)

CRC, colorectal cancer; PSMA, prostate-specific membrane antigen; T,

Kendall's tau.

PSMA expression in hepatic metastasis compared to

HCC

To evaluate the potential of targeting PSMA in hepatic metasta-

sis, PSMA expression in hepatic metastasis was compared with

that of HCC. PSMA expression in hepatic metastasis was not

significantly different from HCC in the entire cohort (p = .334).

None of the subgroups showed significant differences in PSMA

expression in hepatic metastasis compared to HCC (untreated

subgroup: p = .313, treated subgroup: p = .818, concurrent me-

tastasis subgroup: p = .084, metachronous metastasis subgroup:

p = .327, concurrent and untreated subgroup: p = .096, meta-
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chronous and/or treated subgroup: p = .699) (Supplementary
Fig. $3).

Correlation of PSMA expression between hepatic me-
tastasis and primary CRC

The PSMA expression in primary CRC and matched hepatic
metastasis from the same case were compared to assess possible
association. A significant correlation in PSMA expression in
primary CRC and hepatic metastasis was found in the entire
cohort (p = .022, T = 0.227) and untreated subgroup (p = .045,
T =0.219), while no significant association was observed in the
treated subgroup (p =.392, T = 0.239) (Figs. 2, 3).

When stratified by the timing of metastasis, a significant cor-
relation in PSMA expression between primary CRC and hepatic
metastasis was observed in the concurrent metastasis subgroup
(p = 0.022, T = 0.270), but not in the metachronous metastasis
subgroup (p = 0.544, T = 0.123). As expected, a similar pattern
was observed when comparing concurrent and untreated me-
tastasis subgroup (p = 0.033, T = 0.279) with metachronous
and/or treated subgroup (p = 0.302, t = 0.167).

DISCUSSION

Unlike previous studies that included CRC patients with or
without metastasis, our cohort consists solely of hepatic me-
tastasis cases. Haffner et al. [8] reported 16 (84.2%) of 19 liver
CRC metastases were PSMA-positive, when low intensity
staining in less than <10% of endothelium was considered
negative [8]. Study by Abdel-Hadi et al. [9] included 13 CRC
patients with distant metastasis and their results paralleled that
of Haffner et al. [8]. However, tissue collection methods and
treatment history were not specified in Haffner et al’s study [8].
Abdel-Hadi et al. [9] excluded previously treated CRC cases but
did not specify sites of sampled metastatic lesions. Our cohort
consists of a larger number of patients (n = 56) with defined
hepatic metastasis, treatment history, tissue collection method,
and timing of metastasis. Further, correlation between PSMA
expression in hepatic metastasis and pathological variables of
primary CRC was examined in this study.

Although it is relatively well documented that PSMA is up-
regulated as the cancer progresses [6,28-30], several conflicting
findings have been reported [10,31]. PSMA expression in CRC
patients was reported to be associated with higher CRC grade,
male sex, presence of distant metastasis, and vascular invasion

[8,9]. However, our previous study on a larger CRC cohort
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found that unfavorable prognostic features, such as higher
pT, pN, and pTNM stage; the presence and greater number of
tumor deposits; and the use of post-operative adjuvant treat-
ment, were associated with lower PSMA expression [10]. In our
current CRC cohort with concurrent or metachronous hepatic
metastasis, except for tumor size, most clinicopathological
variables previously reported to be associated with PSMA ex-
pression did not show statistically significant association. The
discrepancy might stem from differences in study populations,
or other factors may alter/impact PSMA expression in CRC
with hepatic metastasis.

In our entire cohort, PSMA level in hepatic metastasis was
lower in high-grade primary CRC, advanced pTNM stage at the
time of primary CRC resection and the presence of tumor de-
posit. In addition, nodal involvement in primary CRC showed
a modest association with a lower PSMA expression in hepatic
metastasis (p =.065). In terms of clinicopathological character-
istics of hepatic lesions, biopsy, inoperable hepatic lesion and
synchronous sampling with CRC resection were associated with
lower PSMA expression in hepatic metastasis. The presence of
tumor deposit is an independent adverse prognostic factor in
CRC patients who undergo radical resection [32]. High pTNM
stage, lymph node involvement and higher tumor grade are
unfavorable prognostic features. Inoperable hepatic metastasis
invariably portends a grim prognosis [33]. In our cohort, all
inoperable hepatic metastasis underwent biopsy, which may
account for a lower PSMA expression in biopsied tissues. It ap-
pears that several adverse pathological and clinical features are
associated with a lower PSMA expression in hepatic metastasis,
as it is the case in primary CRCs [10]. One possible explanation
for this pattern is that PSMA regulation may be site- (primary
versus metastatic) or tumor-dependent. Endothelial cells from
different anatomic locations exhibit considerable differences in
gene expression profiles [34]. Furthermore, studies comparing
benign and tumor-associated vasculature found that most dif-
ferentially regulated genes were organ- or stage-specific [35,36].
Thus, although PSMA is widely expressed in the neovasculature
of non-prostatic cancers, its regulatory mechanism in CRC and
its hepatic metastases may differ from that in other cancers, po-
tentially reflecting variations in the tumor microenvironment.
This notion is supported by an animal study showing that
protein expression profiles in the tumor vasculature of pancre-
atic islet tumor cells differed by anatomic sites (orthotopic vs.
heterotopic), highlighting the influence of the tumor microen-

vironment on endothelial cell phenotypes [37].
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To evaluate the effect of treatment status and timing of me-
tastasis in PSMA expression, we performed a subgroup analysis
(Fig. 1). The impact of chemotherapy on PSMA expression is
yet to be investigated in detail. In a study of serous epithelial
ovarian carcinoma, there was no change in PSMA expres-
sion between pre- and post-chemotherapy samples, although
PSMA staining was nearly absent in their cohort [38]. In our
previous analysis of rectal adenocarcinoma, the chemoradio-
therapy-treated subgroup exhibited lower PSMA expression
compared to the untreated subgroup [10]. However, in hepatic
metastasis, no significant difference in PSMA expression was
observed between chemotherapy-treated and untreated sub-
groups. It appears that the impact of chemotherapy on PSMA
expression is dependent on tumor type, location, setting (pri-
mary vs. metastasis), and possibly the treatment regimen, war-
ranting further investigations.

In the untreated subgroup, clinicopathological features of
primary CRC previously linked to lower PSMA expression
in the hepatic metastasis in the entire cohort-such as higher
primary CRC grade, advanced pTNM stage, presence of tu-
mor deposit, biopsied hepatic lesions, and inoperable hepatic
lesions-remained significantly associated. However, none of the
aforementioned features showed a significant association with
PSMA expression in hepatic metastasis from the treated sub-
group. Although older patients showed higher PSMA expres-
sion in the treated subgroup, due to a small number of cases (n
=9), we cannot confirm the clinical significance of this obser-
vation or hypothesize the pathophysiologic mechanism behind
it. However, a marginal association with higher primary CRC
grade and lower PSMA scores (p = .055) was still observed in
the treated subgroup. This raises the possibility that the associ-
ation between adverse pathological features and lower PSMA
expression persists to a certain extent in treated subgroup, as
they are in the entire cohort and untreated subgroup.

When stratified by the timing of metastasis, concurrent me-
tastasis subgroup with the above adverse prognostic features
exhibited a lower PSMA expression in hepatic metastasis.
However, in metachronous metastasis subgroup, no such asso-
ciation was observed. In addition, in the same subgroup with
metachronous metastasis, no association between pTNM stage
at the time of primary CRC resection and PSMA expression in
hepatic metastasis was observed (p = .615, T = -0.112). A sim-
ilar trend was found when concurrent and untreated subgroup
versus treated and/or metachronous subgroup were compared.

These findings suggest that PSMA expression profiles differ

https://doi.org/10.4132/jptm.2025.10.20
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between concurrent and untreated cases versus metachronous
and/or treated cases. Concurrent metastasis cases presented
with hepatic lesions at the time of CRC resection, whereas
metachronous cases developed metastasis later. This time lag
between CRC resection and the development of hepatic lesions
may alter the relationship between PSMA expression in metas-
tasis and the clinicopathological features of the primary CRC.
In other words, PSMA expression in metachronous hepatic
metastasis may no longer reflect the tumor biology of primary
(previous) CRC. Likewise, treatment status is likely to influence
PSMA expression in hepatic metastasis, similar to our observa-
tion in treated rectal cancer [10].

In our entire cohort, the PSMA expression in hepatic me-
tastasis exhibited a positive correlation with that of primary
CRC. This finding suggests that PSMA expression in primary
CRC specimen may be used to estimate that in hepatic metas-
tasis. However, these correlations remained significant only in
concurrent and untreated subgroup, but not in metachronous
and/or treated subgroup, indicating that the time interval and
treatment history influence PSMA expression in hepatic me-
tastasis. A recent study compared the gene mutation profiles of
synchronous and metachronous hepatic metastases with their
corresponding primary CRCs [39]. Primary CRCs giving rise
to concurrent metastases harbored a distinct set of mutations
compared with those leading to metachronous metastases.
Likewise, the mutational landscapes of hepatic metastases dif-
fered by metastasis timing. Notably, when mutation profiles
were compared between primary CRCs and paired hepatic me-
tastases from the same individual, the genes showing the great-
est discrepancies varied according to the timing of metastasis.
These findings indicate that primary CRCs leading to concur-
rent versus metachronous metastases are biologically distinct,
which could account for observed differences in the association
of PSMA expression between primary CRC and hepatic metas-
tases by the timing of metastasis. Regarding treatment history,
it is possible that chemotherapy-induced alterations in tumor
microenvironment could be the cause of the observed dis-
crepancy. Neoadjuvant chemotherapy induces various stromal
histologic changes across multiple cancers, including CRC he-
patic metastases [40-42]. Additionally, chemotherapeutic agent
modifies tumor immune microenvironment [43,44], which
contributes to tumor neoangiogenesis [45,46] and is associated
with intratumoral PSMA expression [47]. A schematic diagram
outlining how chemotherapy and metastasis timing may in-

fluence the association of PSMA expression between primary
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CRC and metastatic lesions is shown in Fig. 4.

Haffner et al. [8] reported among 11 cases with both primary
CRC and nodal/hepatic metastasis available, eight pairs (73%)
showed identical PSMA staining patterns and scores. Treatment
history and the timing of metastasis were not provided in their
manuscript and their scoring system involved staining extent
and intensity, while the PSMA/CD34 ratio in our study is
based on the staining extent. Despite the differences in scoring
methods, their findings align with our results for entire cohort,
as well as concurrent and untreated subgroup. A lack of such
association in metachronous and/or treated subgroup is pos-
sibly due to altered PSMA expression in these cases related to
progression of the disease (time lag) or treatment. Alternatively,
it is also possible that the previous study did not include treated
patients.

In our study, PSMA expression in hepatic metastasis, re-
gardless of treatment history and timing of metastasis, was not
markedly different from HCC. This suggests that hepatic me-
tastasis is expected to sequester PSMA-targeted radiotracer to a
similar extent as HCC does, making PSMA-PET/CT a potential
option in detecting hepatic metastasis. Preliminary studies in
HCC demonstrated that PSMA-PET/CT can detect primary
and metastatic HCC [19,48,49], and the degree of tracer uptake
tends to correlate with PSMA THC [19]. Given that some ad-
verse features of CRC are associated with lower PSMA levels in
hepatic metastasis, PSMA-targeted modalities might be more
useful for patients with seemingly less aggressive CRC with oc-
cult metastasis.

However, it is worthy of noting that PSMA expression is gen-
erally lower in non-prostatic cancers, potentially complicating

imaging [50]. Indeed, Cuda et al. [51] argued that liver metas-

PSMA in hepatic CRC metastasis

tasis in CRC patients does not avidly sequester PSMA-targeted
radiotracer, limiting the utility of PSMA-based therapy in such
patients. However, a small number of patients (n = 10) were en-
rolled for PSMA-targeted imaging, and neither resected tumors
nor their IHC data were available in their 10 patients. Thus, we
believe that the clinical utility of PSMA-directed imaging in
metastatic CRC should be validated in a larger cohort with cor-
responding IHC results obtained using a standardized protocol.
Also, intratumoral staining heterogeneity needs to be addressed
and assessed in a systematic manner to validate the clinical ap-
plicability of this tool, given that metastatic lesions will likely be
biopsied for biomarker testing.

There are several limitations in this study. Non-prostate
cancers may show heterogenous PSMA expression within a
single specimen [5,52], thus small biopsies of hepatic metastasis
could be subjected to sampling error. However, we used Tru-
cut/wedge biopsies or resected specimens, rather than thin
image-guided biopsies, to mitigate this limitation. In addition,
relatively small cohort size, especially the treated subgroup (n =
9), may account for the limited statistical power. Thirdly, meth-
ods for more precise quantification of PSMA THC results, such
as double staining techniques or digital pathology modalities,
were not available due to limited resources. Similarly, the IHC
slides were reviewed by one author; thus, potential interobserv-
er variability could not be addressed.

To the best of our knowledge, this is the first study to sys-
tematically analyze the association of the PSMA expression
and clinicopathological attributes in metastatic CRC cohort,
with clearly defined tissue acquisition methods, metastatic site
(all liver), and treatment history. Lower PSMA expression in

hepatic metastasis is associated with several adverse features of

Discrepancies in PSMA Expression Between Primary CRC and Hepatic Metastases

Treatment history

Chemotherapy-induced changes in tumor immune microenvironment
— Altered tumor neoangiogenesis
— PSMA expression in primary CRC and hepatic metastsis does not correlate in treated cases

Timing of
metastasis

Genetic differences in concurrent vs. metachronous cases
— Distinct sets of genes are differentially regulated in primary CRC and hepatic metastasis
— PSMA expression in primary CRC and hepatic metastsis does not correlate in metachronous cases

Fig. 4. Schematic diagram of potential causes of discrepancies in prostate-specific membrane antigen (PSMA) expression between primary
colorectal cancer (CRC) and hepatic metastasis, based on treatment history and metastasis timing.
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the primary CRC. PSMA expression in hepatic metastasis cor-
relates with that of the primary CRC, only in concurrent and
untreated metastasis. Regardless of treatment history or timing
of metastasis, PSMA expression in hepatic metastasis is similar
to that in primary HCC. Further research is needed to evaluate
the clinical potential of PSMA-targeted modalities in hepatic
CRC metastasis.
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Drug-induced phospholipidosis of the kidney suspected to

be caused by atomoxetine
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Drug-induced phospholipidosis (DIP) is characterized by intracellular accumulation of phospholipids with lamellar body formation secondary to
drug-altered lipid metabolism, which can trigger inflammation and histopathological changes. Fabry disease and DIP both exhibit zebra bodies
on electron microscopy, complicating differential diagnosis. A 17-year-old male with microscopic hematuria and proteinuria had received atom-
oxetine (40 mg) for 11 months to treat attention-deficit hyperactivity disorder. Light microscopy showed one glomerulus with perihilar sclerosis
and periglomerular fibrosis. Kidney biopsy revealed zebra bodies in podocytes, initially suggesting Fabry disease. However, a-galactosidase A
enzyme activity was normal on tandem mass spectrometry. Next-generation sequencing of GLA identified only three benign variants. This rep-
resents the first reported case of atomoxetine-induced DIP. When zebra bodies are observed, clinicians should consider DIP caused by cationic
amphiphilic drugs alongside Fabry disease. Atomoxetine meets the structural criteria for inducing DIP, and awareness of this potential complica-

tion is essential.

Keywords: Lysosomal storage diseases; Fabry disease; Podocytes; Biopsy; Atomoxetine hydrochloride

INTRODUCTION

Fabry disease is a rare metabolic disorder characterized by sys-
temic glycosphingolipid accumulation. As it is X-linked, males
generally have more severe symptoms and faster progression
than females [1]. However, there have been many reports of
atypical variants in males with late onset and involvement of a
single organ [2]. It is thought that this milder disease pheno-
type is due to a certain level of residual enzyme activity asso-
ciated with missense mutations [3]. Pathological findings on
kidney biopsy include enlarged and vacuolated podocytes on
light microscopy, along with lamellated lipid inclusions (known
as “zebra bodies”) in the vacuoles, which can be seen under an
electron microscope [4]. Therefore, if zebra bodies are observed

on kidney biopsy of a pediatric patient with proteinuria, Fabry

disease should generally be considered the primary diagnosis.

However, drug-induced phospholipidosis (DIP) exhibits al-
most identical pathological findings to Fabry disease [5]. It is
diagnosed by first ruling out Fabry disease and then identifying
any suspected drugs, which may include hydroxychloroquine
[5-8] or amiodarone [9,10]. Herein, we describe a case of DIP
in association with atomoxetine (Strattera, Eli Lilly and Com-
pany, Indianapolis, IN, USA), a treatment for attention-deficit
hyperactivity disorder (ADHD). To the best of our knowledge,
this is the first report of atomoxetine as a possible causative
agent for DIP.

CASE REPORT

A 17-year-old male patient visited our outpatient clinic after a
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school urine test showed microscopic hematuria and protein-
uria. There were no specific symptoms. Prior to this visit, he
had taken 40 mg of atomoxetine daily for 12 months as a treat-
ment for ADHD. Proteinuria persisted for 28 months in urine
tests conducted every 6 months; urine albumin-to-creatinine
ratio gradually increased from 412 pg/mgCr to 474.6 pg/mgCr
over 17 months, while the urine protein-to-creatinine ratio
(UPCR) increased from 629.9 mg/g to 666.7 mg/g over the
same period. A kidney biopsy was performed to determine the
cause of proteinuria.

At the time of renal biopsy, the patient was normotensive
(120/70 mmHg of blood pressure) with a normal heart rate (61
beats per minute) and a body mass index of 26.7. There was
no edema. Physical examination was unremarkable otherwise.
Urine analysis showed proteinuria (3+) and microscopic he-
maturia (1+, red blood cell [RBC] 6-10/high-power field) with
dysmorphic RBCs (13%). UPCR was 1,392.5 mg/g. Serum cre-
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atinine was 0.78 mg/dL. Serum albumin was 4.4 g/dL. Choles-
terol level was 195 mg/dL. C-reactive protein was not elevated
at less than 0.2 mg/dL. C3 level was normal at 113 mg/dL. An-
ti-nuclear antibody and anti-neutrophil cytoplasmic antibody
were not detected.

On light microscopy, a total of 20 glomeruli were present.
A glomerulus with perihilar sclerosis was noted; it also had
periglomerular fibrosis with Bowman’s capsule wrinkling (Fig.
1). The other glomeruli were normocellular without mesangial
expansion or size enlargement. The capillary loops were patent
without collapse. The glomerular basement membrane was not
thickened or duplicated. Tubules showed mild atrophy with
focal proteinaceous casts. Mild interstitial fibrosis was present
with mild inflammatory infiltrates. Vessels were unremarkable.
On immunofluorescent microscopy, six glomeruli were present.
Minimal to mild deposits of C3 were present in the mesangium
of the glomeruli. No deposits of IgG, IgA, IgM, C4, Clgq, fibrin-

Fig. 1. Light microscopy reveals a glomerulus showing focal perihilar sclerosis (A, Masson's trichrome) and periglomerular fibrosis with
Bowman's capsule wrinkling (B, periodic acid-Schiff). A glomerulus from Fabry disease, characterized by the presence of foamy histiocytes,

is presented (C).
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ogen, kappa, or lambda were identified. On electron microsco-
py (EM), alternating lamellar structures of electron-dense and
electron-lucent area, known as myeloid or zebra bodies, were
identified in the cytoplasm of podocytes (Fig. 2). The foot pro-
cesses were diffusely effaced, covering around 100% of the area.
Based on histopathology findings, Fabry disease with second-
ary focal segmental glomerulosclerosis was suspected.

To confirm the diagnosis, the activity level of a-galactosidase
A enzyme was measured using tandem mass spectrometry.
The enzyme activity was within normal limits. Next-generation
sequencing was performed on GLA, encompassing the coding
region and the 25 base pairs of the flanking region. The result
was negative for all pathogenic, likely pathogenic, and variants
of undetermined significance; only three benign variants were
identified. Thorough family history taking was done, but none
of the family members had typical symptoms or signs of Fabry
disease, including paresthesia, renal dysfunction, cardiac arryth-
mia, or myocardial infarction. The patient also had no industrial
exposure to silicon, which ruled out the possibility of silicon
nephropathy. Taken together, the final diagnosis was DIP.

He was started on losartan, an angiotensin II receptor block-
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er, at a dose of 50 mg daily. He has been attending the outpa-
tient clinic regularly every 6 months, with proteinuria and renal
function remaining stable. Hematuria remained at 1+, and
UPCR increased slightly to 1,948.3 mg/g at the last visit.

DISCUSSION

Fabry disease is an X-linked inherited disorder characterized by
multiple systemic manifestations due to inherent shortages of
an enzyme, a-galactosidase A, or its inactivity. a-galactosidase
A is a hydrolase that resides in lysosomes and its deficiency
leads to the progressive accumulation of glycosphingolipids
such as globotriaosylceramide (GL-3), which impairs the
function of tissues and organs. The symptoms of Fabry disease
include paresthesias in the extremities, angiokeratomas, corneal
opacity, anhidrosis, and heart and cerebrovascular dysfunction.
When the kidney is affected, proteinuria and hematuria may
occur, and in most cases, it progresses to renal failure when
patients reach their 30s to 40s [11]. Typical light microscopic
findings include foamy and vacuolated podocytes. On EM,
enlarged lysosomes are filled with osmiophilic and lamellated

Fig. 2. Electron microscopy demonstrates zebra bodies (myeloid bodies) within the podocytes and diffuse effacement of the foot processes (A,

x800; B and C, x2,000).
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membrane structures showing an onion skin-like appearance
or parallel dense layers, so called myeloid or “zebra” bodies.
Inclusions related to accumulated GL-3 are typically present in
podocytes. They are also present in the mesangium, parietal
epithelium, tubular epithelium, and vascular myocytes. In this
case, although the patient had zebra bodies on EM, there were
no relevant symptoms or family history.

Although rare, atypical Fabry disease must also be considered
in the differential diagnosis. The distinguishing features of this
condition include a later onset, milder symptoms, and higher
a-galactosidase A activity (ranging from 1% to 35% compared
to less than 1% in the classic form). While the condition is
primarily observed in females due to its X-linked nature, it has
been documented in 1.2% of males with end-stage kidney dis-
ease on hemodialysis [2]. It is possible for patients with atypical
Fabry disease to exhibit near-normal a-galactosidase A activity,
which is consistent with the observations made in this case. In
such case, measuring GL-3 levels would be informative. We
were unable to measure GL-3 levels due to practical constraints,
which is a limitation. Despite the fact that routine sequence
analysis is reported to encompass up to 95% of pathogenic
variants [2], approximately 5% are likely to be identified exclu-
sively through gene-targeted deletion/duplication analysis [2].
Although there are limitations to our analysis, including the
absence of GL-3 level measurement and deletion/duplication
assays, which prevent the complete exclusion of atypical Fabry
disease, the absence of abnormalities in other organs, especially
the heart, and the patient’s relatively young age of 17 years at
the time of biopsy led to a diagnosis of DIP.

Another differential diagnosis that causes zebra bodies is
DIP. Due to their physicochemical structure, cationic amphi-
philic drugs (CADs) can easily pass through cell membranes,
as they have both hydrophobic and hydrophilic domains. The
acidic nature of the lysosome appears to provide a favorable
environment for basic CADs to accumulate and become en-
trapped through protonation [12]. CADs inhibit lysosomal
phospholipase activity by forming indigestible complexes with
phospholipids [13], or by directly inhibiting phospholipase [14].
This leads to phospholipids accumulating in lysosomes [12].
Patients with DIP related to CADs may exhibit less extensive
zebra bodies than those with Fabry disease [6] or curvilinear
bodies (i.e., twisted microtubular structure). However, neither
of these is a definitive distinguishing factor.

Drugs such as hydroxychloroquine [7,8], amiodarone [9], and

ranolazine [15] have been reported to cause phospholipidosis

https://doi.org/10.4132/jptm.2025.12.10

Choi SE et al.

in the kidney. Atomoxetine is a selective norepinephrine re-
uptake inhibitor that has been used to treat ADHD since 2002.
Although atomoxetine has not been reported to cause DIP, its
structure meets the criteria of CADs. It has a primary amine
group corresponding to the hydrophilic domain, as well as two
aromatic rings—a phenyl ring and an o-tolyl ether—corre-
sponding to the hydrophobic domain [16]. The circumstances
in which CADs can cause phospholipidosis are not well under-
stood. The cumulative dose of the drug may be associated with
this condition [17], but experiments in animals and in vivo to
verify this have not yet been conducted. Similarly, the time to re-
cover renal function following drug withdrawal varies, and full
recovery does not always occur [8]. In this case, almost all the
foot processes of the podocytes were effaced, and perihilar scle-
rosis progressed. The patient discontinued atomoxetine at age
8 after 1 year of treatment. At the current follow-up (age 17, 10
years post-discontinuation), proteinuria persists, likely reflecting
irreversible podocyte injury as evidenced by the extensive foot
process effacement and perihilar sclerosis on the initial biopsy.

Various types of drugs, such as antidepressants, antibiotics,
antiarrhythmics, and antimalarials, belong to the CAD catego-
ry, but their association with phospholipidosis and the mech-
anisms that cause cellular and clinical toxicity are relatively
poorly understood. Although a predictive biomarker for phos-
pholipidosis (i.e., urine di-22:6-BMP [18]) has been discovered,
it is expected to be some time before it is introduced into drug
monitoring in practice.

Zebra bodies were once considered a definitive finding of
Fabry disease [19], but are now considered not uncommon in
cases of DIP or silicon nephropathy [20]. Since many drugs
belong to the CAD class, if zebra bodies are found in EM, DIP

should be considered alongside Fabry disease.
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