Skip Navigation
Skip to contents

J Pathol Transl Med : Journal of Pathology and Translational Medicine

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
38 "Chan Kwon Jung"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Original Article
Article image
Fine needle aspiration cytology diagnoses of follicular thyroid carcinoma: results from a multicenter study in Asia
Hee Young Na, Miyoko Higuchi, Shinya Satoh, Kaori Kameyama, Chan Kwon Jung, Su-Jin Shin, Shipra Agarwal, Jen-Fan Hang, Yun Zhu, Zhiyan Liu, Andrey Bychkov, Kennichi Kakudo, So Yeon Park
J Pathol Transl Med. 2024;58(6):331-340.   Published online November 7, 2024
DOI: https://doi.org/10.4132/jptm.2024.10.12
  • 1,922 View
  • 221 Download
AbstractAbstract PDFSupplementary Material
Background
This study was designed to compare diagnostic categories of thyroid fine needle aspiration cytology (FNAC) and incidence of thyroid tumors in the multi-institutional Asian series with a special focus on diagnostic category IV (suspicious for a follicular neoplasm) and follicular thyroid carcinomas (FTCs). Methods: Distribution of FNAC categories, incidence of thyroid tumors in resection specimens and cytologic diagnoses of surgically confirmed follicular adenomas (FAs) and FTCs were collected from 10 institutes from five Asian countries and were compared among countries and between FAs and FTCs. Results: The frequency of category IV diagnoses (3.0%) in preoperative FNAC were significantly lower compared to those in Western countries (10.1%). When comparing diagnostic categories among Asian countries, category IV was more frequent in Japan (4.6%) and India (7.9%) than in Taiwan (1.4%), Korea (1.4%), and China (3.6%). Similarly, incidence of FAs and FTCs in surgical resection specimens was significantly higher in Japan (10.9%) and India (10.1%) than in Taiwan (5.5%), Korea (3.0%), and China (2.5%). FTCs were more commonly diagnosed as category IV in Japan (77.5%) than in Korea (33.3%) and China (35.0%). Nuclear pleomorphism, nuclear crowding, microfollicular pattern, and dyshesive cell pattern were more common in FTCs compared with FAs. Conclusions: Our study highlighted the difference in FNAC diagnostic categories of FTCs among Asian countries, which is likely related to different reporting systems and thyroid cancer incidence. Cytologic features such as nuclear pleomorphism, nuclear crowding, microfollicular pattern, and dyshesive cell pattern were found to be useful in diagnosing FTCs more effectively.
Review
Article image
Cytologic hallmarks and differential diagnosis of papillary thyroid carcinoma subtypes
Agnes Stephanie Harahap, Chan Kwon Jung
J Pathol Transl Med. 2024;58(6):265-282.   Published online November 7, 2024
DOI: https://doi.org/10.4132/jptm.2024.10.11
  • 3,352 View
  • 364 Download
  • 1 Web of Science
  • 1 Crossref
AbstractAbstract PDF
Papillary thyroid carcinoma (PTC) is the most common thyroid malignancy, characterized by a range of subtypes that differ in their cytologic features, clinical behavior, and prognosis. Accurate cytologic evaluation of PTC using fine-needle aspiration is essential but can be challenging due to the morphologic diversity among subtypes. This review focuses on the distinct cytologic characteristics of various PTC subtypes, including the classic type, follicular variant, tall cell, columnar cell, hobnail, diffuse sclerosing, Warthin-like, solid/trabecular, and oncocytic PTCs. Each subtype demonstrates unique nuclear features, architectural patterns, and background elements essential for diagnosis and differentiation from other thyroid lesions. Recognizing these distinct cytologic patterns is essential for identifying aggressive subtypes like tall cell, hobnail, and columnar cell PTCs, which have a higher risk of recurrence, metastasis, and poorer clinical outcomes. Additionally, rare subtypes such as diffuse sclerosing and Warthin-like PTCs present unique cytologic profiles that must be carefully interpreted to avoid diagnostic errors. The review also highlights the cytologic indicators of lymph node metastasis and high-grade features, such as differentiated high-grade thyroid carcinoma. The integration of molecular testing can further refine subtype diagnosis by identifying specific genetic mutations. A thorough understanding of these subtype-specific cytologic features and molecular profiles is vital for accurate diagnosis, risk stratification, and personalized management of PTC patients. Future improvements in diagnostic techniques and standardization are needed to enhance cytologic evaluation and clinical decision-making in thyroid cancer.

Citations

Citations to this article as recorded by  
  • Nuclear pseudoinclusion is associated with BRAFV600E mutation: Analysis of nuclear features in papillary thyroid carcinoma
    Agnes Stephanie Harahap, Dina Khoirunnisa, Salinah, Maria Francisca Ham
    Annals of Diagnostic Pathology.2025; 75: 152434.     CrossRef
Original Article
Article image
Educational exchange in thyroid core needle biopsy diagnosis: enhancing pathological interpretation through guideline integration and peer learning
Agnes Stephanie Harahap, Chan Kwon Jung
J Pathol Transl Med. 2024;58(5):205-213.   Published online July 24, 2024
DOI: https://doi.org/10.4132/jptm.2024.06.24
  • 2,008 View
  • 281 Download
  • 1 Web of Science
AbstractAbstract PDF
Background
While fine needle aspiration cytology (FNAC) plays an essential role in the screening of thyroid nodules, core needle biopsy (CNB) acts as an alternative method to address FNAC limitations. However, diagnosing thyroid CNB samples can be challenging due to variations in background and levels of experience. Effective training is indispensable to mitigate this challenge. We aim to evaluate the impact of an educational program on improving the accuracy of CNB diagnostics.
Methods
The 2-week observational program included a host mentor pathologist with extensive experience and a visiting pathologist. The CNB classification by The Practice Guidelines Committee of the Korean Thyroid Association was used for the report. Two rounds of reviewing the case were carried out, and the level of agreement between the reviewers was analyzed.
Results
The first-round assessment showed a concordance between two pathologists for 247 thyroid CNB specimens by 84.2%, with a kappa coefficient of 0.74 (indicating substantial agreement). This finding was attributed to the discordance in the use of categories III and V. After peer learning, the two pathologists evaluated 30 new cases, which showed an overall improvement in the level of agreement. The percentage of agreement between pathologists on thyroid CNB diagnosis was 86.7%, as measured by kappa coefficient of 0.80.
Conclusions
This educational program, consisting of guided mentorship and peer learning, can substantially enhance the diagnostic accuracy of thyroid CNB. It is useful in promoting consistent diagnostic standards and contributes to the ongoing development of global pathology practices.
Newsletter
Article image
What’s new in thyroid pathology 2024: updates from the new WHO classification and Bethesda system
Andrey Bychkov, Chan Kwon Jung
J Pathol Transl Med. 2024;58(2):98-101.   Published online March 13, 2024
DOI: https://doi.org/10.4132/jptm.2024.03.06
  • 11,868 View
  • 1,458 Download
  • 5 Crossref
AbstractAbstract PDF
In line with the release of the 5th edition WHO Classification of Tumors of Endocrine Organs (2022) and the 3rd edition of the Bethesda System for Reporting Thyroid Cytopathology (2023), the field of thyroid pathology and cytopathology has witnessed key transformations. This digest brings to the fore the refined terminologies, newly introduced categories, and contentious methodological considerations pivotal to the updated classification.

Citations

Citations to this article as recorded by  
  • Cytologic and Clinicopathologic Features of Papillary Thyroid Carcinoma with Prominent Hobnail Features on FNAC
    Deepali Saxena, Ravi Hari Phulware, Prashant Durgapal, Arvind Kumar, Amit Kumar Tyagi
    Indian Journal of Otolaryngology and Head & Neck Surgery.2024; 76(5): 4885.     CrossRef
  • FHL1: A novel diagnostic marker for papillary thyroid carcinoma
    Yeting Zeng, Dehua Zeng, Xingfeng Qi, Hanxi Wang, Xuzhou Wang, Xiaodong Dai, Lijuan Qu
    Pathology International.2024; 74(9): 520.     CrossRef
  • Nouveautés en pathologie thyroïdienne : classification OMS 2022, système Bethesda 2023, biologie moléculaire et testing moléculaire
    Mohamed Amine Bani, Sophie Moog, Voichita Suciu, Livia Lamartina, Abir Al Ghuzlan
    Bulletin du Cancer.2024; 111(10): 10S5.     CrossRef
  • Cytologic hallmarks and differential diagnosis of papillary thyroid carcinoma subtypes
    Agnes Stephanie Harahap, Chan Kwon Jung
    Journal of Pathology and Translational Medicine.2024; 58(6): 265.     CrossRef
  • Surgical and Pathological Challenges in Thyroidectomy after Thermal Ablation of Thyroid Nodules
    Ting-Chun Kuo, Kuen-Yuan Chen, Hsiang-Wei Hu, Jie-Yang Jhuang, Ming-Tsan Lin, Chin-Hao Chang, Ming-Hsun Wu
    Thyroid®.2024; 34(12): 1503.     CrossRef
Review
Article image
The Asian Thyroid Working Group, from 2017 to 2023
Kennichi Kakudo, Chan Kwon Jung, Zhiyan Liu, Mitsuyoshi Hirokawa, Andrey Bychkov, Huy Gia Vuong, Somboon Keelawat, Radhika Srinivasan, Jen-Fan Hang, Chiung-Ru Lai
J Pathol Transl Med. 2023;57(6):289-304.   Published online November 14, 2023
DOI: https://doi.org/10.4132/jptm.2023.10.04
  • 4,477 View
  • 283 Download
  • 10 Web of Science
  • 10 Crossref
AbstractAbstract PDFSupplementary Material
The Asian Thyroid Working Group was founded in 2017 at the 12th Asia Oceania Thyroid Association (AOTA) Congress in Busan, Korea. This group activity aims to characterize Asian thyroid nodule practice and establish strict diagnostic criteria for thyroid carcinomas, a reporting system for thyroid fine needle aspiration cytology without the aid of gene panel tests, and new clinical guidelines appropriate to conservative Asian thyroid nodule practice based on scientific evidence obtained from Asian patient cohorts. Asian thyroid nodule practice is usually designed for patient-centered clinical practice, which is based on the Hippocratic Oath, “First do not harm patients,” and an oriental filial piety “Do not harm one’s own body because it is a precious gift from parents,” which is remote from defensive medical practice in the West where physicians, including pathologists, suffer from severe malpractice climate. Furthermore, Asian practice emphasizes the importance of resource management in navigating the overdiagnosis of low-risk thyroid carcinomas. This article summarizes the Asian Thyroid Working Group activities in the past 7 years, from 2017 to 2023, highlighting the diversity of thyroid nodule practice between Asia and the West and the background reasons why Asian clinicians and pathologists modified Western systems significantly.

Citations

Citations to this article as recorded by  
  • Risk of Infertility in Reproductive-Age Patients With Thyroid Cancer Receiving or Not Receiving 131I Treatment
    Chun-Yi Lin, Cheng-Li Lin, Chia-Hung Kao
    Clinical Nuclear Medicine.2025; 50(3): 201.     CrossRef
  • Association Between Metabolic Dysfunction-Associated Steatotic Liver Disease and Thyroid Cancer
    Sang Yi Moon, Minkook Son, Jung-Hwan Cho, Hye In Kim, Ji Min Han, Ji Cheol Bae, Sunghwan Suh
    Thyroid®.2025; 35(1): 79.     CrossRef
  • Letter: “High Rates of Unnecessary Surgery for Indeterminate Thyroid Nodules in the Absence of Molecular Test and the Cost-Effectiveness of Utilizing Molecular Test in an Asian Population: A Decision Analysis” by Fung et al
    Kennichi Kakudo, Andrey Bychkov, Jen-Fan Hang, Mitsuyoshi Hirokawa, Somboon Keelawat, Zhiyan Liu, Radhika Srinivasan, Chan Kwon Jung
    Thyroid®.2025; 35(5): 595.     CrossRef
  • Thyroid Nodules with Nuclear Atypia of Undetermined Significance (AUS-Nuclear) Hold a Two-Times-Higher Risk of Malignancy than AUS-Other Nodules Regardless of EU-TIRADS Class of the Nodule or Borderline Tumor Interpretation
    Dorota Słowińska-Klencka, Bożena Popowicz, Joanna Duda-Szymańska, Mariusz Klencki
    Cancers.2025; 17(8): 1365.     CrossRef
  • Response to Kakudo et al.: “High Rates of Unnecessary Surgery for Indeterminate Thyroid Nodules in the Absence of Molecular Test and the Cost-Effectiveness of Utilizing Molecular Test in an Asian Population: A Decision Analysis”
    Man Him Matrix Fung, Ching Tang, Gin Wai Kwok, Tin Ho Chan, Yan Luk, David Tak Wai Lui, Carlos King Ho Wong, Brian Hung Hin Lang
    Thyroid®.2025; 35(5): 597.     CrossRef
  • Molecular Testing Could Drive Smarter Decision-Marking for Indeterminate Thyroid Nodule if the Price was Right
    Sarah C. Brennan, Matti L. Gild, Venessa Tsang
    Clinical Thyroidology®.2025; 37(5): 165.     CrossRef
  • Welcoming the new, revisiting the old: a brief glance at cytopathology reporting systems for lung, pancreas, and thyroid
    Rita Luis, Balamurugan Thirunavukkarasu, Deepali Jain, Sule Canberk
    Journal of Pathology and Translational Medicine.2024; 58(4): 165.     CrossRef
  • Are we ready to bridge classification systems? A comprehensive review of different reporting systems in thyroid cytology
    Esther Diana Rossi, Liron Pantanowitz
    Cytopathology.2024; 35(6): 674.     CrossRef
  • Aggressive Types of Malignant Thyroid Neoplasms
    Maria Boudina, Eleana Zisimopoulou, Persefoni Xirou, Alexandra Chrisoulidou
    Journal of Clinical Medicine.2024; 13(20): 6119.     CrossRef
  • Fine needle aspiration cytology diagnoses of follicular thyroid carcinoma: results from a multicenter study in Asia
    Hee Young Na, Miyoko Higuchi, Shinya Satoh, Kaori Kameyama, Chan Kwon Jung, Su-Jin Shin, Shipra Agarwal, Jen-Fan Hang, Yun Zhu, Zhiyan Liu, Andrey Bychkov, Kennichi Kakudo, So Yeon Park
    Journal of Pathology and Translational Medicine.2024; 58(6): 331.     CrossRef
Case Study
Article image
Diagnostic conundrums of schwannomas: two cases highlighting morphological extremes and diagnostic challenges in biopsy specimens of soft tissue tumors
Chankyung Kim, Yang-Guk Chung, Chan Kwon Jung
J Pathol Transl Med. 2023;57(5):278-283.   Published online August 24, 2023
DOI: https://doi.org/10.4132/jptm.2023.07.13
  • 2,719 View
  • 253 Download
  • 1 Crossref
AbstractAbstract PDF
Schwannomas are benign, slow-growing peripheral nerve sheath tumors commonly occurring in the head, neck, and flexor regions of the extremities. Although most schwannomas are easily diagnosable, their variable morphology can occasionally create difficulty in diagnosis. Reporting pathologists should be aware that schwannomas can exhibit a broad spectrum of morphological patterns. Clinical and radiological examinations can show correlation and should be performed, in conjunction with ancillary tests, when appropriate. Furthermore, deferring a definitive diagnosis until excision may be necessary for small biopsy specimens and frozen sections. This report underscores these challenges through examination of two unique schwannoma cases, one predominantly cellular and the other myxoid, both of which posed significant challenges in histological interpretation.

Citations

Citations to this article as recorded by  
  • Plexiform Schwannoma Over the Anterior Chest Wall: A Clinicopathological Review
    Debojyoti Sasmal, Saswata Barenya, Hinglaj Saha, Pankaj Kumar Halder
    Amrita Journal of Medicine.2025; 21(2): 95.     CrossRef
Reviews
Article image
Reevaluating diagnostic categories and associated malignancy risks in thyroid core needle biopsy
Chan Kwon Jung
J Pathol Transl Med. 2023;57(4):208-216.   Published online July 11, 2023
DOI: https://doi.org/10.4132/jptm.2023.06.20
  • 3,920 View
  • 240 Download
  • 7 Web of Science
  • 6 Crossref
AbstractAbstract PDF
As the application of core needle biopsy (CNB) in evaluating thyroid nodules rises in clinical practice, the 2023 Korean Thyroid Association Management Guidelines for Patients with Thyroid Nodules have officially recognized its value for the first time. CNB procures tissue samples preserving both histologic structure and cytologic detail, thereby supplying substantial material for an accurate diagnosis and reducing the necessity for repeated biopsies or subsequent surgical interventions. The current review introduces the risk of malignancy within distinct diagnostic categories, emphasizing the implications of noninvasive follicular thyroid neoplasm with papillary-like nuclear features on these malignancy risks. Prior research has indicated diagnostic challenges associated with follicular-patterned lesions, resulting in notable variation within indeterminate diagnostic categories. The utilization of mutation-specific immunostaining in CNB enhances the accuracy of lesion classification. This review underlines the essential role of a multidisciplinary approach in diagnosing follicular-patterned lesions and the potential of mutation-specific immunostaining to strengthen diagnostic consensus and inform patient management decisions.

Citations

Citations to this article as recorded by  
  • Diagnostic implication of thyroid spherules for cytological diagnosis of thyroid nodules
    Heeseung Sohn, Kennichi Kakudo, Chan Kwon Jung
    Cytopathology.2024; 35(3): 383.     CrossRef
  • A Narrative Review of the 2023 Korean Thyroid Association Management Guideline for Patients with Thyroid Nodules
    Eun Kyung Lee, Young Joo Park, Chan Kwon Jung, Dong Gyu Na
    Endocrinology and Metabolism.2024; 39(1): 61.     CrossRef
  • The Diagnostic Role of Repeated Biopsy of Thyroid Nodules with Atypia of Undetermined Significance with Architectural Atypia on Core-Needle Biopsy
    Hye Hyeon Moon, Sae Rom Chung, Young Jun Choi, Tae-Yon Sung, Dong Eun Song, Tae Yong Kim, Jeong Hyun Lee, Jung Hwan Baek
    Endocrinology and Metabolism.2024; 39(2): 300.     CrossRef
  • Core needle biopsy for thyroid nodules assessment-a new horizon?
    David D Dolidze, Serghei Covantsev, Grigorii M Chechenin, Natalia V Pichugina, Anastasia V Bedina, Anna Bumbu
    World Journal of Clinical Oncology.2024; 15(5): 580.     CrossRef
  • Educational exchange in thyroid core needle biopsy diagnosis: enhancing pathological interpretation through guideline integration and peer learning
    Agnes Stephanie Harahap, Chan Kwon Jung
    Journal of Pathology and Translational Medicine.2024; 58(5): 205.     CrossRef
  • A simplified four-tier classification for thyroid core needle biopsy
    M. Paja, J. L. Del Cura, R. Zabala, I. Korta, Mª T. Gutiérrez, A. Expósito, A. Ugalde
    Journal of Endocrinological Investigation.2024; 48(4): 895.     CrossRef
Article image
Recommendations for pathologic practice using digital pathology: consensus report of the Korean Society of Pathologists
Yosep Chong, Dae Cheol Kim, Chan Kwon Jung, Dong-chul Kim, Sang Yong Song, Hee Jae Joo, Sang-Yeop Yi
J Pathol Transl Med. 2020;54(6):437-452.   Published online October 8, 2020
DOI: https://doi.org/10.4132/jptm.2020.08.27
  • 8,990 View
  • 315 Download
  • 20 Web of Science
  • 23 Crossref
AbstractAbstract PDFSupplementary Material
Digital pathology (DP) using whole slide imaging (WSI) is becoming a fundamental issue in pathology with recent advances and the rapid development of associated technologies. However, the available evidence on its diagnostic uses and practical advice for pathologists on implementing DP remains insufficient, particularly in light of the exponential growth of this industry. To inform DP implementation in Korea, we developed relevant and timely recommendations. We first performed a literature review of DP guidelines, recommendations, and position papers from major countries, as well as a review of relevant studies validating WSI. Based on that information, we prepared a draft. After several revisions, we released this draft to the public and the members of the Korean Society of Pathologists through our homepage and held an open forum for interested parties. Through that process, this final manuscript has been prepared. This recommendation contains an overview describing the background, objectives, scope of application, and basic terminology; guidelines and considerations for the hardware and software used in DP systems and the validation required for DP implementation; conclusions; and references and appendices, including literature on DP from major countries and WSI validation studies.

Citations

Citations to this article as recorded by  
  • An equivalency and efficiency study for one year digital pathology for clinical routine diagnostics in an accredited tertiary academic center
    Viola Iwuajoku, Kübra Ekici, Anette Haas, Mohammed Zaid Khan, Azar Kazemi, Atsuko Kasajima, Claire Delbridge, Alexander Muckenhuber, Elisa Schmoeckel, Fabian Stögbauer, Christine Bollwein, Kristina Schwamborn, Katja Steiger, Carolin Mogler, Peter J. Schüf
    Virchows Archiv.2025;[Epub]     CrossRef
  • An adapted & improved validation protocol for digital pathology implementation
    Ying-Han R. Hsu, Iman Ahmed, Juliana Phlamon, Charlotte Carment-Baker, Joyce Yin Tung Chan, Ioannis Prassas, Karen Weiser, Shaza Zeidan, Blaise Clarke, George M. Yousef
    Seminars in Diagnostic Pathology.2025; 42(4): 150905.     CrossRef
  • Performance of externally validated machine learning models based on histopathology images for the diagnosis, classification, prognosis, or treatment outcome prediction in female breast cancer: A systematic review
    Ricardo Gonzalez, Peyman Nejat, Ashirbani Saha, Clinton J.V. Campbell, Andrew P. Norgan, Cynthia Lokker
    Journal of Pathology Informatics.2024; 15: 100348.     CrossRef
  • Swiss digital pathology recommendations: results from a Delphi process conducted by the Swiss Digital Pathology Consortium of the Swiss Society of Pathology
    Andrew Janowczyk, Inti Zlobec, Cedric Walker, Sabina Berezowska, Viola Huschauer, Marianne Tinguely, Joel Kupferschmid, Thomas Mallet, Doron Merkler, Mario Kreutzfeldt, Radivoje Gasic, Tilman T. Rau, Luca Mazzucchelli, Isgard Eyberg, Gieri Cathomas, Kirst
    Virchows Archiv.2024; 485(1): 13.     CrossRef
  • ChatGPT as an aid for pathological diagnosis of cancer
    Shaivy Malik, Sufian Zaheer
    Pathology - Research and Practice.2024; 253: 154989.     CrossRef
  • Possible benefits, challenges, pitfalls, and future perspective of using ChatGPT in pathology
    Durre Aden, Sufian Zaheer, Sabina Khan
    Revista Española de Patología.2024; 57(3): 198.     CrossRef
  • Remote Placental Sign-Out: What Digital Pathology Can Offer for Pediatric Pathologists
    Casey P. Schukow, Jacqueline K. Macknis
    Pediatric and Developmental Pathology.2024; 27(4): 375.     CrossRef
  • Digital Validation in Breast Cancer Needle Biopsies: Comparison of Histological Grade and Biomarker Expression Assessment Using Conventional Light Microscopy, Whole Slide Imaging, and Digital Image Analysis
    Ji Eun Choi, Kyung-Hee Kim, Younju Lee, Dong-Wook Kang
    Journal of Personalized Medicine.2024; 14(3): 312.     CrossRef
  • Pathologists light level preferences using the microscope—study to guide digital pathology display use
    Charlotte Jennings, Darren Treanor, David Brettle
    Journal of Pathology Informatics.2024; 15: 100379.     CrossRef
  • Eye tracking in digital pathology: A comprehensive literature review
    Alana Lopes, Aaron D. Ward, Matthew Cecchini
    Journal of Pathology Informatics.2024; 15: 100383.     CrossRef
  • Diagnostic Assessment of Deep Learning Algorithms for Frozen Tissue Section Analysis in Women with Breast Cancer
    Young-Gon Kim, In Hye Song, Seung Yeon Cho, Sungchul Kim, Milim Kim, Soomin Ahn, Hyunna Lee, Dong Hyun Yang, Namkug Kim, Sungwan Kim, Taewoo Kim, Daeyoung Kim, Jonghyeon Choi, Ki-Sun Lee, Minuk Ma, Minki Jo, So Yeon Park, Gyungyub Gong
    Cancer Research and Treatment.2023; 55(2): 513.     CrossRef
  • Recent application of artificial intelligence on histopathologic image-based prediction of gene mutation in solid cancers
    Mohammad Rizwan Alam, Kyung Jin Seo, Jamshid Abdul-Ghafar, Kwangil Yim, Sung Hak Lee, Hyun-Jong Jang, Chan Kwon Jung, Yosep Chong
    Briefings in Bioinformatics.2023;[Epub]     CrossRef
  • Sustainable development goals applied to digital pathology and artificial intelligence applications in low- to middle-income countries
    Sumi Piya, Jochen K. Lennerz
    Frontiers in Medicine.2023;[Epub]     CrossRef
  • Diagnostic proficiency test using digital cytopathology and comparative assessment of whole slide images of cytologic samples for quality assurance program in Korea
    Yosep Chong, Soon Auck Hong, Hoon Kyu Oh, Soo Jin Jung, Bo-Sung Kim, Ji Yun Jeong, Ho-Chang Lee, Gyungyub Gong
    Journal of Pathology and Translational Medicine.2023; 57(5): 251.     CrossRef
  • Real-World Implementation of Digital Pathology: Results From an Intercontinental Survey
    Daniel Gomes Pinto, Andrey Bychkov, Naoko Tsuyama, Junya Fukuoka, Catarina Eloy
    Laboratory Investigation.2023; 103(12): 100261.     CrossRef
  • National digital pathology projects in Switzerland: A 2023 update
    Rainer Grobholz, Andrew Janowczyk, Ana Leni Frei, Mario Kreutzfeldt, Viktor H. Koelzer, Inti Zlobec
    Die Pathologie.2023; 44(S3): 225.     CrossRef
  • Understanding the ethical and legal considerations of Digital Pathology
    Cheryl Coulter, Francis McKay, Nina Hallowell, Lisa Browning, Richard Colling, Philip Macklin, Tom Sorell, Muhammad Aslam, Gareth Bryson, Darren Treanor, Clare Verrill
    The Journal of Pathology: Clinical Research.2022; 8(2): 101.     CrossRef
  • Current Trend of Artificial Intelligence Patents in Digital Pathology: A Systematic Evaluation of the Patent Landscape
    Muhammad Joan Ailia, Nishant Thakur, Jamshid Abdul-Ghafar, Chan Kwon Jung, Kwangil Yim, Yosep Chong
    Cancers.2022; 14(10): 2400.     CrossRef
  • Recent Applications of Artificial Intelligence from Histopathologic Image-Based Prediction of Microsatellite Instability in Solid Cancers: A Systematic Review
    Mohammad Rizwan Alam, Jamshid Abdul-Ghafar, Kwangil Yim, Nishant Thakur, Sung Hak Lee, Hyun-Jong Jang, Chan Kwon Jung, Yosep Chong
    Cancers.2022; 14(11): 2590.     CrossRef
  • Automated Hybrid Model for Detecting Perineural Invasion in the Histology of Colorectal Cancer
    Jiyoon Jung, Eunsu Kim, Hyeseong Lee, Sung Hak Lee, Sangjeong Ahn
    Applied Sciences.2022; 12(18): 9159.     CrossRef
  • Development of quality assurance program for digital pathology by the Korean Society of Pathologists
    Yosep Chong, Jeong Mo Bae, Dong Wook Kang, Gwangil Kim, Hye Seung Han
    Journal of Pathology and Translational Medicine.2022; 56(6): 370.     CrossRef
  • Improving quality control in the routine practice for histopathological interpretation of gastrointestinal endoscopic biopsies using artificial intelligence
    Young Sin Ko, Yoo Mi Choi, Mujin Kim, Youngjin Park, Murtaza Ashraf, Willmer Rafell Quiñones Robles, Min-Ju Kim, Jiwook Jang, Seokju Yun, Yuri Hwang, Hani Jang, Mun Yong Yi, Anwar P.P. Abdul Majeed
    PLOS ONE.2022; 17(12): e0278542.     CrossRef
  • What is Essential is (No More) Invisible to the Eyes: The Introduction of BlocDoc in the Digital Pathology Workflow
    Vincenzo L’Imperio, Fabio Gibilisco, Filippo Fraggetta
    Journal of Pathology Informatics.2021; 12(1): 32.     CrossRef
Original Article
Article image
Highly prevalent BRAF V600E and low-frequency TERT promoter mutations underlie papillary thyroid carcinoma in Koreans
Sue Youn Kim, Taeeun Kim, Kwangsoon Kim, Ja Seong Bae, Jeong Soo Kim, Chan Kwon Jung
J Pathol Transl Med. 2020;54(4):310-317.   Published online June 15, 2020
DOI: https://doi.org/10.4132/jptm.2020.05.12
  • 8,387 View
  • 193 Download
  • 27 Web of Science
  • 28 Crossref
AbstractAbstract PDF
Background
The presence of telomerase reverse transcriptase (TERT) promoter mutations have been associated with a poor prognosis in patients with papillary thyroid carcinomas (PTC). The frequency of TERT promoter mutations varies widely depending on the population and the nature of the study.
Methods
Data were prospectively collected in 724 consecutive patients who underwent thyroidectomy for PTC from 2018 to 2019. Molecular testing for BRAF V600E and TERT promoter mutations was performed in all cases.
Results
TERT promoter alterations in two hotspots (C228T and C250T) and C216T were found in 16 (2.2%) and 4 (0.6%) of all PTCs, respectively. The hotspot mutations were significantly associated with older age at diagnosis, larger tumor size, extrathyroidal extension, higher pathologic T category, lateral lymph node metastasis, and higher American Thyroid Association recurrence risk. The patients with C216T variant were younger and had a lower American Thyroid Association recurrence risk than those with hotspot mutations. Concurrent BRAF V600E was found in 19 of 20 cases with TERT promoter mutations. Of 518 microcarcinomas measuring ≤1.0 cm in size, hotspot mutations and C216T variants were detected in five (1.0%) and three (0.6%) cases, respectively.
Conclusions
Our study indicates a low frequency of TERT promoter mutations in Korean patients with PTC and supports previous findings that TERT promoter mutations are more common in older patients with unfavorable clinicopathologic features and BRAF V600E. TERT promoter mutations in patients with microcarcinoma are uncommon and may have a limited role in risk stratification. The C216T variant seems to have no clinicopathologic effect on PTC.

Citations

Citations to this article as recorded by  
  • The impact of C216T and hot spot mutations of the TERT promoter on the clinicopathologic characteristics and S100A10 expression in papillary thyroid carcinoma: a comparative study
    Ping Li, Chuqiang Huang, Xiaoling Liu, Huihui Gui, Jian Li
    Diagnostic Pathology.2025;[Epub]     CrossRef
  • Refining NTRK Fusion Detection in Papillary Thyroid Carcinoma Through Pan-TRK Immunohistochemistry and Histopathologic Features
    Hyun Lee, Sue Youn Kim, Ji Min Park, Seung-Hyun Jung, Ozgur Mete, Chan Kwon Jung
    Endocrine Pathology.2025;[Epub]     CrossRef
  • Validation of Diagnostic Utility of Washout CYFRA 21-1 in Lymph Node Metastasis of Thyroid Cancer
    Jeongmin Lee, Yuri Shin, Jeongun Kwak, Hye Lim Park, Sohee Lee, Mee Kyung Kim, Ja Seong Bae, Chan Kwon Jung, So Lyung Jung, Jung-Min Lee, Sang-Ah Chang, Dong-Jun Lim
    Clinical Cancer Research.2025; 31(10): 1922.     CrossRef
  • Active surveillance for adult low-risk papillary thyroid microcarcinoma—a review focused on the 30-year experience of Kuma Hospital—
    Yasuhiro Ito, Akira Miyauchi, Makoto Fujishima, Masashi Yamamoto, Takahiro Sasaki
    Endocrine Journal.2024; 71(1): 7.     CrossRef
  • Diagnostic utilities of washout CYFRA 21-1 combined with washout thyroglobulin for metastatic lymph nodes in thyroid cancer: a prospective study
    Joonseon Park, Solji An, Kwangsoon Kim, Jeong Soo Kim, Chan Kwon Jung, Ja Seong Bae
    Scientific Reports.2024;[Epub]     CrossRef
  • Korean Thyroid Association Guidelines on the Management of Differentiated Thyroid Cancers; Part I. Initial Management of Differentiated Thyroid Cancers - Chapter 5. Evaluation of Recurrence Risk Postoperatively and Initial Risk Stratification in Different
    Eun Kyung Lee, Young Shin Song, Ho-Cheol Kang, Sun Wook Kim, Dong Gyu Na, Shin Je Moon, Dong-Jun Lim, Kyong Yeun Jung, Yun Jae Chung, Chan Kwon Jung, Young Joo Park
    International Journal of Thyroidology.2024; 17(1): 68.     CrossRef
  • Korean Thyroid Association Management Guidelines for Patients with Thyroid Nodules 2024
    Young Joo Park, Eun Kyung Lee, Young Shin Song, Su Hwan Kang, Bon Seok Koo, Sun Wook Kim, Dong Gyu Na, Seung-Kuk Baek, So Won Oh, Min Kyoung Lee, Sang-Woo Lee, Young Ah Lee, Yong Sang Lee, Ji Ye Lee, Dong-Jun Lim, Leehi Joo, Yuh-Seog Jung, Chan Kwon Jung,
    International Journal of Thyroidology.2024; 17(1): 208.     CrossRef
  • PD-L1 Expression and Its Modulating Factors in Anaplastic Thyroid Carcinoma
    Shipra Agarwal, Chan Kwon Jung, Pranitha Gaddam, Mitsuyoshi Hirokawa, Takuya Higashiyama, Jen-Fan Hang, Wei-An Lai, Somboon Keelawat, Zhiyan Liu, Hee Young Na, So Yeon Park, Junya Fukuoka, Shinya Satoh, Zhanna Mussazhanova, Masahiro Nakashima, Kennichi Ka
    American Journal of Surgical Pathology.2024; 48(10): 1233.     CrossRef
  • 2023 Korean Thyroid Association Management Guidelines for Patients with Thyroid Nodules
    Young Joo Park, Eun Kyung Lee, Young Shin Song, Soo Hwan Kang, Bon Seok Koo, Sun Wook Kim, Dong Gyu Na, Seung-Kuk Baek, So Won Oh, Min Kyoung Lee, Sang-Woo Lee, Young Ah Lee, Yong Sang Lee, Ji Ye Lee, Dong-Jun Lim, Leehi Joo, Yuh-Seog Jung, Chan Kwon Jung
    International Journal of Thyroidology.2023; 16(1): 1.     CrossRef
  • Incidence and risk factors for occult lesions in low-risk papillary thyroid microcarcinoma patients with tumor characteristics appropriate for thermal ablation: A retrospective study
    Langping Jin, Kaijun Zhu, Changliang Xu, Jiaying Lu, Liming Huang
    Medicine.2023; 102(38): e34938.     CrossRef
  • Identification of NIFTP-Specific mRNA Markers for Reliable Molecular Diagnosis of Thyroid Tumors
    So-Yeon Lee, Jong-Lyul Park, Kwangsoon Kim, Ja Seong Bae, Jae-Yoon Kim, Seon-Young Kim, Chan Kwon Jung
    Endocrine Pathology.2023; 34(3): 311.     CrossRef
  • Risk factors and predictive model for recurrence in papillary thyroid carcinoma: a single-center retrospective cohort study based on 955 cases
    Yin Li, Jiahe Tian, Ke Jiang, Zhongyu Wang, Songbo Gao, Keyang Wei, Ankui Yang, Qiuli Li
    Frontiers in Endocrinology.2023;[Epub]     CrossRef
  • BRAFV600E Positivity-Dependent Effect of Age on Papillary Thyroid Cancer Recurrence Risk
    Joonseon Park, Solji An, Kwangsoon Kim, Ja Seong Bae, Jeong Soo Kim
    Cancers.2023; 15(22): 5395.     CrossRef
  • BRAFV600E mutation test on fine‐needle aspiration specimens of thyroid nodules: Clinical correlations for 4600 patients
    Huang Chen, Aiping Song, Ye Wang, Yifan He, Jie Tong, Jinxi Di, Chun Li, Zhongren Zhou, Xiaopin Cai, Dingrong Zhong, Jiping Da
    Cancer Medicine.2022; 11(1): 40.     CrossRef
  • Clinicopathological indicators for TERT promoter mutation in papillary thyroid carcinoma
    Hee Young Na, Hyeong Won Yu, Woochul Kim, Jae Hoon Moon, Chang Ho Ahn, Sang Il Choi, Yeo Koon Kim, June Young Choi, So Yeon Park
    Clinical Endocrinology.2022; 97(1): 106.     CrossRef
  • A Systematic Review and Meta‐analysis on the Occurrence of Biomarker Mutation in Colorectal Cancer among the Asian Population
    Hafeez Afolabi, Salzihan Md Salleh, Zaidi Zakaria, Ch’ng Ewe Seng, Siti Norasikin Binti Mohd Nafil, Ahmad Aizat Bin Abdul Aziz, Yusuf Wada, Ahmad Irekeola, Syed Sameer Aga
    BioMed Research International.2022;[Epub]     CrossRef
  • A Significance of Concomitant BRAFV600E and TERT Mutations in Polish Patients with Papillary Thyroid Microcarcinoma: A Retrospective Cohort Study Based on 430 Cases
    Artur Kuchareczko, Janusz Kopczyński, Artur Kowalik, Kinga Hińcza-Nowak, Agnieszka Walczyk, Iwona Pałyga, Tomasz Trybek, Monika Szymonek, Danuta Gąsior-Perczak, Klaudia Gadawska-Juszczyk, Estera Mikina, Izabela Płachta, Agnieszka Suligowska, Agnieszka Płu
    Thyroid.2022; 32(11): 1372.     CrossRef
  • Machine learning for identifying benign and malignant of thyroid tumors: A retrospective study of 2,423 patients
    Yuan-yuan Guo, Zhi-jie Li, Chao Du, Jun Gong, Pu Liao, Jia-xing Zhang, Cong Shao
    Frontiers in Public Health.2022;[Epub]     CrossRef
  • TERT Promoter and BRAF V600E Mutations in Papillary Thyroid Cancer: A Single-Institution Experience in Korea
    Min Jhi Kim, Jin Kyong Kim, Gi Jeong Kim, Sang-Wook Kang, Jandee Lee, Jong Ju Jeong, Woong Youn Chung, Daham Kim, Kee-Hyun Nam
    Cancers.2022; 14(19): 4928.     CrossRef
  • Frequency of TERT Promoter Mutations in Real-World Analysis of 2,092 Thyroid Carcinoma Patients (Endocrinol Metab 2022;37:652-63, Heera Yang et al.)
    Sue Youn Kim, Chan Kwon Jung
    Endocrinology and Metabolism.2022; 37(6): 947.     CrossRef
  • Frequency of TERT Promoter Mutations in Real-World Analysis of 2,092 Thyroid Carcinoma Patients (Endocrinol Metab 2022;37:652-63, Heera Yang et al.)
    Hyunju Park, Jae Hoon Chung
    Endocrinology and Metabolism.2022; 37(6): 949.     CrossRef
  • Molecular Pathology of Non-familial Follicular Epithelial–Derived Thyroid Cancer in Adults: From RAS/BRAF-like Tumor Designations to Molecular Risk Stratification
    Paula Soares, Antónia Afonso Póvoa, Miguel Melo, João Vinagre, Valdemar Máximo, Catarina Eloy, José Manuel Cameselle-Teijeiro, Manuel Sobrinho-Simões
    Endocrine Pathology.2021; 32(1): 44.     CrossRef
  • Clinicopathological Characteristics and Recurrence-Free Survival of Rare Variants of Papillary Thyroid Carcinomas in Korea: A Retrospective Study
    Mijin Kim, Sun Wook Cho, Young Joo Park, Hwa Young Ahn, Hee Sung Kim, Yong Joon Suh, Dughyun Choi, Bu Kyung Kim, Go Eun Yang, Il-Seok Park, Ka Hee Yi, Chan Kwon Jung, Bo Hyun Kim
    Endocrinology and Metabolism.2021; 36(3): 619.     CrossRef
  • Clinical Application of TERT Promoter Mutations in Urothelial Carcinoma
    Yujiro Hayashi, Kazutoshi Fujita, George J. Netto, Norio Nonomura
    Frontiers in Oncology.2021;[Epub]     CrossRef
  • MicroRNA Profile for Diagnostic and Prognostic Biomarkers in Thyroid Cancer
    Jong-Lyul Park, Seon-Kyu Kim, Sora Jeon, Chan-Kwon Jung, Yong-Sung Kim
    Cancers.2021; 13(4): 632.     CrossRef
  • Prospective Analysis of TERT Promoter Mutations in Papillary Thyroid Carcinoma at a Single Institution
    Yun-Suk Choi, Seong-Woon Choi, Jin-Wook Yi
    Journal of Clinical Medicine.2021; 10(10): 2179.     CrossRef
  • Significance of telomerase reverse-transcriptase promoter mutations in differentiated thyroid cancer
    Hung-Fei Lai, Chi-Yu Kuo, Shih-Ping Cheng
    Formosan Journal of Surgery.2021; 54(5): 171.     CrossRef
  • Early Diagnosis of Low-Risk Papillary Thyroid Cancer Results Rather in Overtreatment Than a Better Survival
    Jolanta Krajewska, Aleksandra Kukulska, Malgorzata Oczko-Wojciechowska, Agnieszka Kotecka-Blicharz, Katarzyna Drosik-Rutowicz, Malgorzata Haras-Gil, Barbara Jarzab, Daria Handkiewicz-Junak
    Frontiers in Endocrinology.2020;[Epub]     CrossRef
Editorial
Article image
New insights into classification and risk stratification of encapsulated thyroid tumors with a predominantly papillary architecture
Chan Kwon Jung, So Yeon Park, Jang-Hee Kim, Kennichi Kakudo
J Pathol Transl Med. 2020;54(3):197-203.   Published online May 14, 2020
DOI: https://doi.org/10.4132/jptm.2020.04.29
  • 6,216 View
  • 260 Download
  • 3 Web of Science
  • 2 Crossref
PDF

Citations

Citations to this article as recorded by  
  • The Asian Thyroid Working Group, from 2017 to 2023
    Kennichi Kakudo, Chan Kwon Jung, Zhiyan Liu, Mitsuyoshi Hirokawa, Andrey Bychkov, Huy Gia Vuong, Somboon Keelawat, Radhika Srinivasan, Jen-Fan Hang, Chiung-Ru Lai
    Journal of Pathology and Translational Medicine.2023; 57(6): 289.     CrossRef
  • Updates in the Pathologic Classification of Thyroid Neoplasms: A Review of the World Health Organization Classification
    Yanhua Bai, Kennichi Kakudo, Chan Kwon Jung
    Endocrinology and Metabolism.2020; 35(4): 696.     CrossRef
Review
Article image
Introduction to digital pathology and computer-aided pathology
Soojeong Nam, Yosep Chong, Chan Kwon Jung, Tae-Yeong Kwak, Ji Youl Lee, Jihwan Park, Mi Jung Rho, Heounjeong Go
J Pathol Transl Med. 2020;54(2):125-134.   Published online February 13, 2020
DOI: https://doi.org/10.4132/jptm.2019.12.31
  • 17,431 View
  • 611 Download
  • 79 Web of Science
  • 80 Crossref
AbstractAbstract PDF
Digital pathology (DP) is no longer an unfamiliar term for pathologists, but it is still difficult for many pathologists to understand the engineering and mathematics concepts involved in DP. Computer-aided pathology (CAP) aids pathologists in diagnosis. However, some consider CAP a threat to the existence of pathologists and are skeptical of its clinical utility. Implementation of DP is very burdensome for pathologists because technical factors, impact on workflow, and information technology infrastructure must be considered. In this paper, various terms related to DP and computer-aided pathologic diagnosis are defined, current applications of DP are discussed, and various issues related to implementation of DP are outlined. The development of computer-aided pathologic diagnostic tools and their limitations are also discussed.

Citations

Citations to this article as recorded by  
  • Deep learning model to diagnose cardiac amyloidosis from haematoxylin/eosin-stained myocardial tissue
    Takeshi Tohyama, Takeshi Iwasaki, Masataka Ikeda, Masato Katsuki, Tatsuya Watanabe, Kayo Misumi, Keisuke Shinohara, Takeo Fujino, Toru Hashimoto, Shouji Matsushima, Tomomi Ide, Junji Kishimoto, Koji Todaka, Yoshinao Oda, Kohtaro Abe
    European Heart Journal - Imaging Methods and Practice.2025;[Epub]     CrossRef
  • The current landscape of artificial intelligence in oral and maxillofacial surgery– a narrative review
    Rushil Rajiv Dang, Balram Kadaikal, Sam El Abbadi, Branden R. Brar, Amit Sethi, Radhika Chigurupati
    Oral and Maxillofacial Surgery.2025;[Epub]     CrossRef
  • Assessing the quality of whole slide images in cytology from nuclei features
    Paul Barthe, Romain Brixtel, Yann Caillot, Benoît Lemoine, Arnaud Renouf, Vianney Thurotte, Ouarda Beniken, Sébastien Bougleux, Olivier Lézoray
    Journal of Pathology Informatics.2025; 17: 100420.     CrossRef
  • An update on applications of digital pathology: primary diagnosis; telepathology, education and research
    Shamail Zia, Isil Z. Yildiz-Aktas, Fazail Zia, Anil V. Parwani
    Diagnostic Pathology.2025;[Epub]     CrossRef
  • Artificial intelligence–driven digital pathology in urological cancers: current trends and future directions
    Inyoung Paik, Geongyu Lee, Joonho Lee, Tae-Yeong Kwak, Hong Koo Ha
    Prostate International.2025;[Epub]     CrossRef
  • Label-free optical microscopy with artificial intelligence: a new paradigm in pathology
    Chiho Yoon, Eunwoo Park, Donggyu Kim, Byullee Park, Chulhong Kim
    Biophotonics Discovery.2025;[Epub]     CrossRef
  • EPIIC: Edge-Preserving Method Increasing Nuclei Clarity for Compression Artifacts Removal in Whole-Slide Histopathological Images
    Julia Merta, Michal Marczyk
    Applied Sciences.2025; 15(8): 4450.     CrossRef
  • Comparative analysis of a 5G campus network and existing networks for real-time consultation in remote pathology
    Ilgar I. Guseinov, Arnab Bhowmik, Somaia AbuBaker, Anna E. Schmaus-Klughammer, Thomas Spittler
    Journal of Pathology Informatics.2025; : 100444.     CrossRef
  • Artificial intelligence for automatic detection of basal cell carcinoma from frozen tissue tangential biopsies
    Dennis H Murphree, Yong-hun Kim, Kirk A Sidey, Nneka I Comfere, Nahid Y Vidal
    Clinical and Experimental Dermatology.2024; 49(7): 719.     CrossRef
  • Performance of externally validated machine learning models based on histopathology images for the diagnosis, classification, prognosis, or treatment outcome prediction in female breast cancer: A systematic review
    Ricardo Gonzalez, Peyman Nejat, Ashirbani Saha, Clinton J.V. Campbell, Andrew P. Norgan, Cynthia Lokker
    Journal of Pathology Informatics.2024; 15: 100348.     CrossRef
  • Invisible for a few but essential for many: the role of Histotechnologists in the establishment of digital pathology
    Gisela Magalhães, Rita Calisto, Catarina Freire, Regina Silva, Diana Montezuma, Sule Canberk, Fernando Schmitt
    Journal of Histotechnology.2024; 47(1): 39.     CrossRef
  • Using digital pathology to analyze the murine cerebrovasculature
    Dana M Niedowicz, Jenna L Gollihue, Erica M Weekman, Panhavuth Phe, Donna M Wilcock, Christopher M Norris, Peter T Nelson
    Journal of Cerebral Blood Flow & Metabolism.2024; 44(4): 595.     CrossRef
  • PATrans: Pixel-Adaptive Transformer for edge segmentation of cervical nuclei on small-scale datasets
    Hexuan Hu, Jianyu Zhang, Tianjin Yang, Qiang Hu, Yufeng Yu, Qian Huang
    Computers in Biology and Medicine.2024; 168: 107823.     CrossRef
  • CNAC-Seg: Effective segmentation for cervical nuclei in adherent cells and clusters via exploring gaps of receptive fields
    Hexuan Hu, Jianyu Zhang, Tianjin Yang, Qiang Hu, Yufeng Yu, Qian Huang
    Biomedical Signal Processing and Control.2024; 90: 105833.     CrossRef
  • Artificial Intelligence-Enabled Prostate Cancer Diagnosis and Prognosis: Current State and Future Implications
    Swati Satturwar, Anil V. Parwani
    Advances in Anatomic Pathology.2024; 31(2): 136.     CrossRef
  • Ensemble Deep Learning Model to Predict Lymphovascular Invasion in Gastric Cancer
    Jonghyun Lee, Seunghyun Cha, Jiwon Kim, Jung Joo Kim, Namkug Kim, Seong Gyu Jae Gal, Ju Han Kim, Jeong Hoon Lee, Yoo-Duk Choi, Sae-Ryung Kang, Ga-Young Song, Deok-Hwan Yang, Jae-Hyuk Lee, Kyung-Hwa Lee, Sangjeong Ahn, Kyoung Min Moon, Myung-Giun Noh
    Cancers.2024; 16(2): 430.     CrossRef
  • Artificial intelligence’s impact on breast cancer pathology: a literature review
    Amr Soliman, Zaibo Li, Anil V. Parwani
    Diagnostic Pathology.2024;[Epub]     CrossRef
  • Automated Analysis of Nuclear Parameters in Oral Exfoliative Cytology Using Machine Learning
    Shubhangi Mhaske, Karthikeyan Ramalingam, Preeti Nair, Shubham Patel, Arathi Menon P, Nida Malik, Sumedh Mhaske
    Cureus.2024;[Epub]     CrossRef
  • Enhancing AI Research for Breast Cancer: A Comprehensive Review of Tumor-Infiltrating Lymphocyte Datasets
    Alessio Fiorin, Carlos López Pablo, Marylène Lejeune, Ameer Hamza Siraj, Vincenzo Della Mea
    Journal of Imaging Informatics in Medicine.2024; 37(6): 2996.     CrossRef
  • Current Developments in Diagnosis of Salivary Gland Tumors: From Structure to Artificial Intelligence
    Alexandra Corina Faur, Roxana Buzaș, Adrian Emil Lăzărescu, Laura Andreea Ghenciu
    Life.2024; 14(6): 727.     CrossRef
  • Comparative analysis of chronic progressive nephropathy (CPN) diagnosis in rat kidneys using an artificial intelligence deep learning model
    Yeji Bae, Jongsu Byun, Hangyu Lee, Beomseok Han
    Toxicological Research.2024; 40(4): 551.     CrossRef
  • A Pan-Cancer Patient-Derived Xenograft Histology Image Repository with Genomic and Pathologic Annotations Enables Deep Learning Analysis
    Brian S. White, Xing Yi Woo, Soner Koc, Todd Sheridan, Steven B. Neuhauser, Shidan Wang, Yvonne A. Evrard, Li Chen, Ali Foroughi pour, John D. Landua, R. Jay Mashl, Sherri R. Davies, Bingliang Fang, Maria Gabriela Raso, Kurt W. Evans, Matthew H. Bailey, Y
    Cancer Research.2024; 84(13): 2060.     CrossRef
  • Non-contrasted computed tomography (NCCT) based chronic thromboembolic pulmonary hypertension (CTEPH) automatic diagnosis using cascaded network with multiple instance learning
    Mayang Zhao, Liming Song, Jiarui Zhu, Ta Zhou, Yuanpeng Zhang, Shu-Cheng Chen, Haojiang Li, Di Cao, Yi-Quan Jiang, Waiyin Ho, Jing Cai, Ge Ren
    Physics in Medicine & Biology.2024; 69(18): 185011.     CrossRef
  • MR_NET: A Method for Breast Cancer Detection and Localization from Histological Images Through Explainable Convolutional Neural Networks
    Rachele Catalano, Myriam Giusy Tibaldi, Lucia Lombardi, Antonella Santone, Mario Cesarelli, Francesco Mercaldo
    Sensors.2024; 24(21): 7022.     CrossRef
  • Advances in AI-Enhanced Biomedical Imaging for Cancer Immunology
    Willa Wen-You Yim, Felicia Wee, Zheng Yi Ho, Xinyun Feng, Marcia Zhang, Samuel Lee, Inti Zlobec, Joe Yeong, Mai Chan Lau
    World Scientific Annual Review of Cancer Immunology.2024;[Epub]     CrossRef
  • Blockchain: A safe digital technology to share cancer diagnostic results in pandemic times—Challenges and legacy for the future
    Bruno Natan Santana Lima, Lucas Alves da Mota Santana, Rani Iani Costa Gonçalo, Carla Samily de Oliveira Costa, Daniel Pitanga de Sousa Nogueira, Cleverson Luciano Trento, Wilton Mitsunari Takeshita
    Oral Surgery.2023; 16(3): 300.     CrossRef
  • Pathologists’ acceptance of telepathology in the Ministry of National Guard Health Affairs Hospitals in Saudi Arabia: A survey study
    Raneem Alawashiz, Sharifah Abdullah AlDossary
    DIGITAL HEALTH.2023;[Epub]     CrossRef
  • An Atrous Convolved Hybrid Seg-Net Model with residual and attention mechanism for gland detection and segmentation in histopathological images
    Manju Dabass, Jyoti Dabass
    Computers in Biology and Medicine.2023; 155: 106690.     CrossRef
  • Validation of a Machine Learning Expert Supporting System, ImmunoGenius, Using Immunohistochemistry Results of 3000 Patients with Lymphoid Neoplasms
    Jamshid Abdul-Ghafar, Kyung Jin Seo, Hye-Ra Jung, Gyeongsin Park, Seung-Sook Lee, Yosep Chong
    Diagnostics.2023; 13(7): 1308.     CrossRef
  • Diagnosing Infectious Diseases in Poultry Requires a Holistic Approach: A Review
    Dieter Liebhart, Ivana Bilic, Beatrice Grafl, Claudia Hess, Michael Hess
    Poultry.2023; 2(2): 252.     CrossRef
  • Recent application of artificial intelligence on histopathologic image-based prediction of gene mutation in solid cancers
    Mohammad Rizwan Alam, Kyung Jin Seo, Jamshid Abdul-Ghafar, Kwangil Yim, Sung Hak Lee, Hyun-Jong Jang, Chan Kwon Jung, Yosep Chong
    Briefings in Bioinformatics.2023;[Epub]     CrossRef
  • Canine Mammary Tumor Histopathological Image Classification via Computer-Aided Pathology: An Available Dataset for Imaging Analysis
    Giovanni P. Burrai, Andrea Gabrieli, Marta Polinas, Claudio Murgia, Maria Paola Becchere, Pierfranco Demontis, Elisabetta Antuofermo
    Animals.2023; 13(9): 1563.     CrossRef
  • Rapid digital pathology of H&E-stained fresh human brain specimens as an alternative to frozen biopsy
    Bhaskar Jyoti Borah, Yao-Chen Tseng, Kuo-Chuan Wang, Huan-Chih Wang, Hsin-Yi Huang, Koping Chang, Jhih Rong Lin, Yi-Hua Liao, Chi-Kuang Sun
    Communications Medicine.2023;[Epub]     CrossRef
  • Applied machine learning in hematopathology
    Taher Dehkharghanian, Youqing Mu, Hamid R. Tizhoosh, Clinton J. V. Campbell
    International Journal of Laboratory Hematology.2023; 45(S2): 87.     CrossRef
  • Automated diagnosis of 7 canine skin tumors using machine learning on H&E-stained whole slide images
    Marco Fragoso-Garcia, Frauke Wilm, Christof A. Bertram, Sophie Merz, Anja Schmidt, Taryn Donovan, Andrea Fuchs-Baumgartinger, Alexander Bartel, Christian Marzahl, Laura Diehl, Chloe Puget, Andreas Maier, Marc Aubreville, Katharina Breininger, Robert Klopf
    Veterinary Pathology.2023; 60(6): 865.     CrossRef
  • Artificial Intelligence in the Pathology of Gastric Cancer
    Sangjoon Choi, Seokhwi Kim
    Journal of Gastric Cancer.2023; 23(3): 410.     CrossRef
  • Efficient Convolution Network to Assist Breast Cancer Diagnosis and Target Therapy
    Ching-Wei Wang, Kai-Lin Chu, Hikam Muzakky, Yi-Jia Lin, Tai-Kuang Chao
    Cancers.2023; 15(15): 3991.     CrossRef
  • Multi-Configuration Analysis of DenseNet Architecture for Whole Slide Image Scoring of ER-IHC
    Wan Siti Halimatul Munirah Wan Ahmad, Mohammad Faizal Ahmad Fauzi, Md Jahid Hasan, Zaka Ur Rehman, Jenny Tung Hiong Lee, See Yee Khor, Lai-Meng Looi, Fazly Salleh Abas, Afzan Adam, Elaine Wan Ling Chan, Sei-Ichiro Kamata
    IEEE Access.2023; 11: 79911.     CrossRef
  • Digitization of Pathology Labs: A Review of Lessons Learned
    Lars Ole Schwen, Tim-Rasmus Kiehl, Rita Carvalho, Norman Zerbe, André Homeyer
    Laboratory Investigation.2023; 103(11): 100244.     CrossRef
  • Artificial Intelligence in Endoscopic Ultrasonography-Guided Fine-Needle Aspiration/Biopsy (EUS-FNA/B) for Solid Pancreatic Lesions: Opportunities and Challenges
    Xianzheng Qin, Taojing Ran, Yifei Chen, Yao Zhang, Dong Wang, Chunhua Zhou, Duowu Zou
    Diagnostics.2023; 13(19): 3054.     CrossRef
  • Deep Learning for the Pathologic Diagnosis of Hepatocellular Carcinoma, Cholangiocarcinoma, and Metastatic Colorectal Cancer
    Hyun-Jong Jang, Jai-Hyang Go, Younghoon Kim, Sung Hak Lee
    Cancers.2023; 15(22): 5389.     CrossRef
  • AIR-UNet++: a deep learning framework for histopathology image segmentation and detection
    Anusree Kanadath, J. Angel Arul Jothi, Siddhaling Urolagin
    Multimedia Tools and Applications.2023; 83(19): 57449.     CrossRef
  • Deep Learning-Based Dermatological Condition Detection: A Systematic Review With Recent Methods, Datasets, Challenges, and Future Directions
    Stephanie S. Noronha, Mayuri A. Mehta, Dweepna Garg, Ketan Kotecha, Ajith Abraham
    IEEE Access.2023; 11: 140348.     CrossRef
  • Digital pathology and artificial intelligence in translational medicine and clinical practice
    Vipul Baxi, Robin Edwards, Michael Montalto, Saurabh Saha
    Modern Pathology.2022; 35(1): 23.     CrossRef
  • Artificial Intelligence in Toxicological Pathology: Quantitative Evaluation of Compound-Induced Follicular Cell Hypertrophy in Rat Thyroid Gland Using Deep Learning Models
    Valeria Bertani, Olivier Blanck, Davy Guignard, Frederic Schorsch, Hannah Pischon
    Toxicologic Pathology.2022; 50(1): 23.     CrossRef
  • Investigating the genealogy of the literature on digital pathology: a two-dimensional bibliometric approach
    Dayu Hu, Chengyuan Wang, Song Zheng, Xiaoyu Cui
    Scientometrics.2022; 127(2): 785.     CrossRef
  • Digital Dermatopathology and Its Application to Mohs Micrographic Surgery
    Yeongjoo Oh, Hye Min Kim, Soon Won Hong, Eunah Shin, Jihee Kim, Yoon Jung Choi
    Yonsei Medical Journal.2022; 63(Suppl): S112.     CrossRef
  • Assessment of parathyroid gland cellularity by digital slide analysis
    Rotem Sagiv, Bertha Delgado, Oleg Lavon, Vladislav Osipov, Re'em Sade, Sagi Shashar, Ksenia M. Yegodayev, Moshe Elkabets, Ben-Zion Joshua
    Annals of Diagnostic Pathology.2022; 58: 151907.     CrossRef
  • PancreaSys: An Automated Cloud-Based Pancreatic Cancer Grading System
    Muhammad Nurmahir Mohamad Sehmi, Mohammad Faizal Ahmad Fauzi, Wan Siti Halimatul Munirah Wan Ahmad, Elaine Wan Ling Chan
    Frontiers in Signal Processing.2022;[Epub]     CrossRef
  • Classification of Mouse Lung Metastatic Tumor with Deep Learning
    Ha Neul Lee, Hong-Deok Seo, Eui-Myoung Kim, Beom Seok Han, Jin Seok Kang
    Biomolecules & Therapeutics.2022; 30(2): 179.     CrossRef
  • Techniques for digital histological morphometry of the pineal gland
    Bogdan-Alexandru Gheban, Horaţiu Alexandru Colosi, Ioana-Andreea Gheban-Roșca, Carmen Georgiu, Dan Gheban, Doiniţa Crişan, Maria Crişan
    Acta Histochemica.2022; 124(4): 151897.     CrossRef
  • Current Trend of Artificial Intelligence Patents in Digital Pathology: A Systematic Evaluation of the Patent Landscape
    Muhammad Joan Ailia, Nishant Thakur, Jamshid Abdul-Ghafar, Chan Kwon Jung, Kwangil Yim, Yosep Chong
    Cancers.2022; 14(10): 2400.     CrossRef
  • Recent Applications of Artificial Intelligence from Histopathologic Image-Based Prediction of Microsatellite Instability in Solid Cancers: A Systematic Review
    Mohammad Rizwan Alam, Jamshid Abdul-Ghafar, Kwangil Yim, Nishant Thakur, Sung Hak Lee, Hyun-Jong Jang, Chan Kwon Jung, Yosep Chong
    Cancers.2022; 14(11): 2590.     CrossRef
  • Development of a prognostic prediction support system for cervical intraepithelial neoplasia using artificial intelligence-based diagnosis
    Takayuki Takahashi, Hikaru Matsuoka, Rieko Sakurai, Jun Akatsuka, Yusuke Kobayashi, Masaru Nakamura, Takashi Iwata, Kouji Banno, Motomichi Matsuzaki, Jun Takayama, Daisuke Aoki, Yoichiro Yamamoto, Gen Tamiya
    Journal of Gynecologic Oncology.2022;[Epub]     CrossRef
  • Digital Pathology and Artificial Intelligence Applications in Pathology
    Heounjeong Go
    Brain Tumor Research and Treatment.2022; 10(2): 76.     CrossRef
  • Mass spectrometry imaging to explore molecular heterogeneity in cell culture
    Tanja Bien, Krischan Koerfer, Jan Schwenzfeier, Klaus Dreisewerd, Jens Soltwisch
    Proceedings of the National Academy of Sciences.2022;[Epub]     CrossRef
  • Integrating artificial intelligence in pathology: a qualitative interview study of users' experiences and expectations
    Jojanneke Drogt, Megan Milota, Shoko Vos, Annelien Bredenoord, Karin Jongsma
    Modern Pathology.2022; 35(11): 1540.     CrossRef
  • Deep Learning on Basal Cell Carcinoma In Vivo Reflectance Confocal Microscopy Data
    Veronika Shavlokhova, Michael Vollmer, Patrick Gholam, Babak Saravi, Andreas Vollmer, Jürgen Hoffmann, Michael Engel, Christian Freudlsperger
    Journal of Personalized Medicine.2022; 12(9): 1471.     CrossRef
  • Deep Learning-Based Classification of Uterine Cervical and Endometrial Cancer Subtypes from Whole-Slide Histopathology Images
    JaeYen Song, Soyoung Im, Sung Hak Lee, Hyun-Jong Jang
    Diagnostics.2022; 12(11): 2623.     CrossRef
  • A self-supervised contrastive learning approach for whole slide image representation in digital pathology
    Parsa Ashrafi Fashi, Sobhan Hemati, Morteza Babaie, Ricardo Gonzalez, H.R. Tizhoosh
    Journal of Pathology Informatics.2022; 13: 100133.     CrossRef
  • A Matched-Pair Analysis of Nuclear Morphologic Features Between Core Needle Biopsy and Surgical Specimen in Thyroid Tumors Using a Deep Learning Model
    Faridul Haq, Andrey Bychkov, Chan Kwon Jung
    Endocrine Pathology.2022; 33(4): 472.     CrossRef
  • Development of quality assurance program for digital pathology by the Korean Society of Pathologists
    Yosep Chong, Jeong Mo Bae, Dong Wook Kang, Gwangil Kim, Hye Seung Han
    Journal of Pathology and Translational Medicine.2022; 56(6): 370.     CrossRef
  • Machine learning in renal pathology
    Matthew Nicholas Basso, Moumita Barua, Julien Meyer, Rohan John, April Khademi
    Frontiers in Nephrology.2022;[Epub]     CrossRef
  • Whole Slide Image Quality in Digital Pathology: Review and Perspectives
    Romain Brixtel, Sebastien Bougleux, Olivier Lezoray, Yann Caillot, Benoit Lemoine, Mathieu Fontaine, Dalal Nebati, Arnaud Renouf
    IEEE Access.2022; 10: 131005.     CrossRef
  • Generalizability of Deep Learning System for the Pathologic Diagnosis of Various Cancers
    Hyun-Jong Jang, In Hye Song, Sung Hak Lee
    Applied Sciences.2021; 11(2): 808.     CrossRef
  • Recent advances in the use of stimulated Raman scattering in histopathology
    Martin Lee, C. Simon Herrington, Manasa Ravindra, Kristel Sepp, Amy Davies, Alison N. Hulme, Valerie G. Brunton
    The Analyst.2021; 146(3): 789.     CrossRef
  • Preference and Demand for Digital Pathology and Computer-Aided Diagnosis among Korean Pathologists: A Survey Study Focused on Prostate Needle Biopsy
    Soo Jeong Nam, Yosep Chong, Chan Kwon Jung, Tae-Yeong Kwak, Ji Youl Lee, Jihwan Park, Mi Jung Rho, Heounjeong Go
    Applied Sciences.2021; 11(16): 7380.     CrossRef
  • An SVM approach towards breast cancer classification from H&E-stained histopathology images based on integrated features
    M. A. Aswathy, M. Jagannath
    Medical & Biological Engineering & Computing.2021; 59(9): 1773.     CrossRef
  • Diagnosis prediction of tumours of unknown origin using ImmunoGenius, a machine learning-based expert system for immunohistochemistry profile interpretation
    Yosep Chong, Nishant Thakur, Ji Young Lee, Gyoyeon Hwang, Myungjin Choi, Yejin Kim, Hwanjo Yu, Mee Yon Cho
    Diagnostic Pathology.2021;[Epub]     CrossRef
  • Deep Learning for Automatic Subclassification of Gastric Carcinoma Using Whole-Slide Histopathology Images
    Hyun-Jong Jang, In-Hye Song, Sung-Hak Lee
    Cancers.2021; 13(15): 3811.     CrossRef
  • A novel evaluation method for Ki-67 immunostaining in paraffin-embedded tissues
    Eliane Pedra Dias, Nathália Silva Carlos Oliveira, Amanda Oliveira Serra-Campos, Anna Karoline Fausto da Silva, Licínio Esmeraldo da Silva, Karin Soares Cunha
    Virchows Archiv.2021; 479(1): 121.     CrossRef
  • Assessment of Digital Pathology Imaging Biomarkers Associated with Breast Cancer Histologic Grade
    Andrew Lagree, Audrey Shiner, Marie Angeli Alera, Lauren Fleshner, Ethan Law, Brianna Law, Fang-I Lu, David Dodington, Sonal Gandhi, Elzbieta A. Slodkowska, Alex Shenfield, Katarzyna J. Jerzak, Ali Sadeghi-Naini, William T. Tran
    Current Oncology.2021; 28(6): 4298.     CrossRef
  • Prediction of genetic alterations from gastric cancer histopathology images using a fully automated deep learning approach
    Hyun-Jong Jang, Ahwon Lee, Jun Kang, In Hye Song, Sung Hak Lee
    World Journal of Gastroenterology.2021; 27(44): 7687.     CrossRef
  • Clustered nuclei splitting based on recurrent distance transform in digital pathology images
    Lukasz Roszkowiak, Anna Korzynska, Dorota Pijanowska, Ramon Bosch, Marylene Lejeune, Carlos Lopez
    EURASIP Journal on Image and Video Processing.2020;[Epub]     CrossRef
  • Current Trends of Artificial Intelligence for Colorectal Cancer Pathology Image Analysis: A Systematic Review
    Nishant Thakur, Hongjun Yoon, Yosep Chong
    Cancers.2020; 12(7): 1884.     CrossRef
  • A bird’s-eye view of deep learning in bioimage analysis
    Erik Meijering
    Computational and Structural Biotechnology Journal.2020; 18: 2312.     CrossRef
  • Pathomics in urology
    Victor M. Schuettfort, Benjamin Pradere, Michael Rink, Eva Comperat, Shahrokh F. Shariat
    Current Opinion in Urology.2020; 30(6): 823.     CrossRef
  • Model Fooling Attacks Against Medical Imaging: A Short Survey
    Tuomo Sipola, Samir Puuska, Tero Kokkonen
    Information & Security: An International Journal.2020; 46(2): 215.     CrossRef
  • Recommendations for pathologic practice using digital pathology: consensus report of the Korean Society of Pathologists
    Yosep Chong, Dae Cheol Kim, Chan Kwon Jung, Dong-chul Kim, Sang Yong Song, Hee Jae Joo, Sang-Yeop Yi
    Journal of Pathology and Translational Medicine.2020; 54(6): 437.     CrossRef
  • A machine-learning expert-supporting system for diagnosis prediction of lymphoid neoplasms using a probabilistic decision-tree algorithm and immunohistochemistry profile database
    Yosep Chong, Ji Young Lee, Yejin Kim, Jingyun Choi, Hwanjo Yu, Gyeongsin Park, Mee Yon Cho, Nishant Thakur
    Journal of Pathology and Translational Medicine.2020; 54(6): 462.     CrossRef
Editorial
Article image
Papillary thyroid carcinoma variants with tall columnar cells
Chan Kwon Jung
J Pathol Transl Med. 2020;54(1):123-123.   Published online January 15, 2020
DOI: https://doi.org/10.4132/jptm.2019.12.18
  • 5,553 View
  • 172 Download
  • 1 Web of Science
  • 1 Crossref
PDF

Citations

Citations to this article as recorded by  
  • Updates in the Pathologic Classification of Thyroid Neoplasms: A Review of the World Health Organization Classification
    Yanhua Bai, Kennichi Kakudo, Chan Kwon Jung
    Endocrinology and Metabolism.2020; 35(4): 696.     CrossRef
Review
Article image
2019 Practice guidelines for thyroid core needle biopsy: a report of the Clinical Practice Guidelines Development Committee of the Korean Thyroid Association
Chan Kwon Jung, Jung Hwan Baek, Dong Gyu Na, Young Lyun Oh, Ka Hee Yi, Ho-Cheol Kang
J Pathol Transl Med. 2020;54(1):64-86.   Published online January 15, 2020
DOI: https://doi.org/10.4132/jptm.2019.12.04
  • 21,844 View
  • 965 Download
  • 38 Web of Science
  • 47 Crossref
AbstractAbstract PDF
Ultrasound-guided core needle biopsy (CNB) has been increasingly used for the pre-operative diagnosis of thyroid nodules. Since the Korean Society of the Thyroid Radiology published the ‘Consensus Statement and Recommendations for Thyroid CNB’ in 2017 and the Korean Endocrine Pathology Thyroid CNB Study Group published ‘Pathology Reporting of Thyroid Core Needle Biopsy’ in 2015, advances have occurred rapidly not only in the management guidelines for thyroid nodules but also in the diagnostic terminology and classification schemes. The Clinical Practice Guidelines Development Committee of the Korean Thyroid Association (KTA) reviewed publications on thyroid CNB from 1995 to September 2019 and updated the recommendations and statements for the diagnosis and management of thyroid nodules using CNB. Recommendations for the resolution of clinical controversies regarding the use of CNB were based on expert opinion. These practical guidelines include recommendations and statements regarding indications for CNB, patient preparation, CNB technique, biopsy-related complications, biopsy specimen preparation and processing, and pathology interpretation and reporting of thyroid CNB.

Citations

Citations to this article as recorded by  
  • Comparison of core-needle biopsy and repeat fine-needle aspiration biopsy for thyroid nodules with initially inconclusive findings: a systematic review, diagnostic accuracy meta-analysis, and meta-regression
    Hendra Zufry, Timotius Ivan Hariyanto
    Journal of the American Society of Cytopathology.2025; 14(3): 159.     CrossRef
  • Ultrasound-guided core-needle biopsy for diagnosis of thyroid cancer
    D.D. Dolidze, S.D. Kovantsev, Z.A. Bagatelia, A.V. Bumbu, Yu.V. Barinov, G.M. Chechenin, N.V. Pichugina, D.G. Gogolashvili
    Pirogov Russian Journal of Surgery.2025; (3): 87.     CrossRef
  • Superior Diagnostic Yield of Core Needle Biopsy Over Fine Needle Aspiration in Diagnosing Follicular-Patterned Neoplasms: A Multicenter Study Focusing on Bethesda IV Results
    Leehi Joo, Jung Hwan Baek, Jungbok Lee, Dong Eun Song, Sae Rom Chung, Young Jun Choi, Jeong Hyun Lee
    Korean Journal of Radiology.2025;[Epub]     CrossRef
  • Diagnostic yield of fine needle aspiration with simultaneous core needle biopsy for thyroid nodules
    Mohammad Ali Hasannia, Ramin Pourghorban, Hoda Asefi, Amir Aria, Elham Nazar, Hojat Ebrahiminik, Alireza Mohamadian
    Journal of Pathology and Translational Medicine.2025; 59(3): 180.     CrossRef
  • Lessons learned from the first 2 years of experience with thyroid core needle biopsy at an Indonesian national referral hospital
    Agnes Stephanie Harahap, Maria Francisca Ham, Retno Asti Werdhani, Erwin Danil Julian, Rafi Ilmansyah, Chloe Indira Arfelita Mangunkusumso, Tri Juli Edi Tarigan
    Journal of Pathology and Translational Medicine.2025; 59(3): 149.     CrossRef
  • Pre-operative FNA in goiter with compressive symptoms: a systematic review and meta-analysis
    Moeen Sbeit, Rania Faris, Ohad Ronen
    Endocrine Practice.2025;[Epub]     CrossRef
  • A comparative analysis of core needle biopsy and repeat fine needle aspiration in patients with inconclusive initial cytology of thyroid nodules
    Xuejiao Su, Can Yue, Wanting Yang, Buyun Ma
    Frontiers in Endocrinology.2024;[Epub]     CrossRef
  • A Narrative Review of the 2023 Korean Thyroid Association Management Guideline for Patients with Thyroid Nodules
    Eun Kyung Lee, Young Joo Park, Chan Kwon Jung, Dong Gyu Na
    Endocrinology and Metabolism.2024; 39(1): 61.     CrossRef
  • Doing more with less: integrating small biopsies in cytology practice
    Anjali Saqi, Michiya Nishino, Mauro Saieg, Amy Ly, Abberly Lott Limbach
    Journal of the American Society of Cytopathology.2024; 13(4): 233.     CrossRef
  • 2023 Update of the Korean Thyroid Association Guidelines for the Management of Thyroid Nodules
    Eun Kyung Lee, Young Joo Park
    Clinical Thyroidology®.2024; 36(4): 153.     CrossRef
  • Korean Thyroid Association Guidelines on the Management of Differentiated Thyroid Cancers; Part I. Initial Management of Differentiated Thyroid Cancers - Chapter 2. Surgical Management of Thyroid Cancer 2024
    Yoon Young Cho, Cho Rok Lee, Ho-Cheol Kang, Bon Seok Koo, Hyungju Kwon, Sun Wook Kim, Won Woong Kim, Jung-Han Kim, Dong Gyu Na, Young Joo Park, Kyorim Back, Young Shin Song, Seung Hoon Woo, Ho-Ryun Won, Chang Hwan Ryu, Jee Hee Yoon, Min Kyoung Lee, Eun Ky
    International Journal of Thyroidology.2024; 17(1): 30.     CrossRef
  • Korean Thyroid Association Management Guidelines for Patients with Thyroid Nodules 2024
    Young Joo Park, Eun Kyung Lee, Young Shin Song, Su Hwan Kang, Bon Seok Koo, Sun Wook Kim, Dong Gyu Na, Seung-Kuk Baek, So Won Oh, Min Kyoung Lee, Sang-Woo Lee, Young Ah Lee, Yong Sang Lee, Ji Ye Lee, Dong-Jun Lim, Leehi Joo, Yuh-Seog Jung, Chan Kwon Jung,
    International Journal of Thyroidology.2024; 17(1): 208.     CrossRef
  • Korean Thyroid Association Guidelines on the Management of Differentiated Thyroid Cancers; Overview and Summary 2024
    Young Joo Park, Eun Kyung Lee, Young Shin Song, Bon Seok Koo, Hyungju Kwon, Keunyoung Kim, Mijin Kim, Bo Hyun Kim, Won Gu Kim, Won Bae Kim, Won Woong Kim, Jung-Han Kim, Hee Kyung Kim, Hee Young Na, Shin Je Moon, Jung-Eun Moon, Sohyun Park, Jun-Ook Park, J
    International Journal of Thyroidology.2024; 17(1): 1.     CrossRef
  • Educational exchange in thyroid core needle biopsy diagnosis: enhancing pathological interpretation through guideline integration and peer learning
    Agnes Stephanie Harahap, Chan Kwon Jung
    Journal of Pathology and Translational Medicine.2024; 58(5): 205.     CrossRef
  • Current role of interventional radiology in thyroid nodules
    Onur Taydas, Erbil Arik, Omer Faruk Sevinc, Ahmet Burak Kara, Mustafa Ozdemir, Hasret Cengiz, Zulfu Bayhan, Mehmet Halil Ozturk
    Frontiers in Endocrinology.2024;[Epub]     CrossRef
  • Neck Schwannoma Masking as Thyroid Tumour: Into the Deep of Diagnostics and Anatomy
    Serghei Covantsev, Anna Bumbu, Anna Sukhotko, Evghenii Zakurdaev, Ivan Kuts, Andrey Evsikov
    Diagnostics.2024; 14(20): 2332.     CrossRef
  • Thermal ablation for Bethesda III and IV thyroid nodules: current diagnosis and management
    Wen-Hui Chan, Pi-Ling Chiang, An-Ni Lin, Yen-Hsiang Chang, Wei-Che Lin
    Ultrasonography.2024; 43(6): 395.     CrossRef
  • A new LNC89/LNC60-Col11a2 axis revealed by whole-transcriptome analysis may be associated with goiters related to excess iodine nutrition
    Guanying Nie, Shuang Li, Wei Zhang, Fangang Meng, Zixuan Ru, Jiahui Li, Dianjun Sun, Ming Li
    Frontiers in Endocrinology.2024;[Epub]     CrossRef
  • A simplified four-tier classification for thyroid core needle biopsy
    M. Paja, J. L. Del Cura, R. Zabala, I. Korta, Mª T. Gutiérrez, A. Expósito, A. Ugalde
    Journal of Endocrinological Investigation.2024; 48(4): 895.     CrossRef
  • Risk of thyroid cancer in a lung cancer screening population of the National Lung Screening Trial according to the presence of incidental thyroid nodules detected on low-dose chest CT
    Hyobin Seo, Kwang Nam Jin, Ji Sang Park, Koung Mi Kang, Eun Kyung Lee, Ji Ye Lee, Roh-Eul Yoo, Young Joo Park, Ji-hoon Kim
    Ultrasonography.2023; 42(2): 275.     CrossRef
  • Preoperative Risk Stratification of Follicular-patterned Thyroid Lesions on Core Needle Biopsy by Histologic Subtyping and RAS Variant-specific Immunohistochemistry
    Meejeong Kim, Sora Jeon, Chan Kwon Jung
    Endocrine Pathology.2023; 34(2): 247.     CrossRef
  • Differential regional importance mapping for thyroid nodule malignancy prediction with potential to improve needle aspiration biopsy sampling reliability
    Liping Wang, Yuan Wang, Wenliang Lu, Dong Xu, Jincao Yao, Lijing Wang, Lei Xu
    Frontiers in Oncology.2023;[Epub]     CrossRef
  • Preoperative evaluation of thyroid nodules – Diagnosis and management strategies
    Tapoi Dana Antonia, Lambrescu Ioana Maria, Gheorghisan-Galateanu Ancuta-Augustina
    Pathology - Research and Practice.2023; 246: 154516.     CrossRef
  • 2023 Korean Thyroid Association Management Guidelines for Patients with Thyroid Nodules
    Young Joo Park, Eun Kyung Lee, Young Shin Song, Soo Hwan Kang, Bon Seok Koo, Sun Wook Kim, Dong Gyu Na, Seung-Kuk Baek, So Won Oh, Min Kyoung Lee, Sang-Woo Lee, Young Ah Lee, Yong Sang Lee, Ji Ye Lee, Dong-Jun Lim, Leehi Joo, Yuh-Seog Jung, Chan Kwon Jung
    International Journal of Thyroidology.2023; 16(1): 1.     CrossRef
  • Fast Track Management of Primary Thyroid Lymphoma in the Very Elderly Patient
    Pierre Yves Marcy, Frederic Bauduer, Juliette Thariat, Olivier Gisserot, Edouard Ghanassia, Bruno Chetaille, Laurys Boudin, Jean Baptiste Morvan
    Current Oncology.2023; 30(6): 5816.     CrossRef
  • Reevaluating diagnostic categories and associated malignancy risks in thyroid core needle biopsy
    Chan Kwon Jung
    Journal of Pathology and Translational Medicine.2023; 57(4): 208.     CrossRef
  • Diagnostic performance of shear wave elastography in thyroid nodules with indeterminate cytology: A systematic review and meta-analysis
    Yuxuan Qiu, Zhichao Xing, Qianru Yang, Yan Luo, Buyun Ma
    Heliyon.2023; 9(10): e20654.     CrossRef
  • Comparison of the diagnostic value of fine needle aspiration and ultrasound in thyroid pathology
    P. S. Glushkov, R. Kh. Azimov, N. L. Aleshenko, E. A. Maruchak, Y. P. Sych, G. N. Minkova, K. A. Shemyatovsky, V. A. Gorsky
    Endocrine Surgery.2023; 17(3): 43.     CrossRef
  • Comparison of Core Needle Biopsy and Repeat Fine-Needle Aspiration in Avoiding Diagnostic Surgery for Thyroid Nodules Initially Diagnosed as Atypia/Follicular Lesion of Undetermined Significance
    Leehi Joo, Dong Gyu Na, Ji-hoon Kim, Hyobin Seo
    Korean Journal of Radiology.2022; 23(2): 280.     CrossRef
  • Diagnostic efficacy, performance and safety of side-cut core needle biopsy for thyroid nodules: comparison of automated and semi-automated biopsy needles
    Ji Yeon Park, Seong Yoon Yi, Soo Heui Baek, Yu Hyun Lee, Heon-Ju Kwon, Hee Jin Park
    Endocrine.2022; 76(2): 341.     CrossRef
  • Thyroid Cancer Diagnostics Related to Occupational and Environmental Risk Factors: An Integrated Risk Assessment Approach
    Gabriela Maria Berinde, Andreea Iulia Socaciu, Mihai Adrian Socaciu, Andreea Cozma, Armand Gabriel Rajnoveanu, Gabriel Emil Petre, Doina Piciu
    Diagnostics.2022; 12(2): 318.     CrossRef
  • Approach to Bethesda system category III thyroid nodules according to US-risk stratification
    Jieun Kim, Jung Hee Shin, Young Lyun Oh, Soo Yeon Hahn, Ko Woon Park
    Endocrine Journal.2022; 69(1): 67.     CrossRef
  • Clinicopathological and Molecular Features of Secondary Cancer (Metastasis) to the Thyroid and Advances in Management
    Marie Nguyen, George He, Alfred King-Yin Lam
    International Journal of Molecular Sciences.2022; 23(6): 3242.     CrossRef
  • Diagnostic Performance of Thyroid Core Needle Biopsy Using the Revised Reporting System: Comparison with Fine Needle Aspiration Cytology
    Kwangsoon Kim, Ja Seong Bae, Jeong Soo Kim, So Lyung Jung, Chan Kwon Jung
    Endocrinology and Metabolism.2022; 37(1): 159.     CrossRef
  • Core Needle Biopsy Can Early and Precisely Identify Large Thyroid Masses
    Antonio Matrone, Luigi De Napoli, Liborio Torregrossa, Aleksandr Aghababyan, Piermarco Papini, Carlo Enrico Ambrosini, Rosa Cervelli, Clara Ugolini, Fulvio Basolo, Eleonora Molinaro, Rossella Elisei, Gabriele Materazzi
    Frontiers in Oncology.2022;[Epub]     CrossRef
  • Primary thyroid leiomyosarcoma with transvenous extension to the right atrium: a case report
    Juraj Dubrava, Peter Martanovic, Marina Pavlovicova, Pavel Babal, Akhil Narang, Maria Mattioli, Nidhish Tiwari, Zhiyu Liu, Mariame Chakir
    European Heart Journal - Case Reports.2022;[Epub]     CrossRef
  • Radiofrequency ablation for management of thyroid nodules in quarantine zone of COVID-19 pandemic setting in Indonesia
    Kristanto Yuli Yarso, Sumadi Lukman Anwar
    Annals of Medicine and Surgery.2022; 81: 104132.     CrossRef
  • A Matched-Pair Analysis of Nuclear Morphologic Features Between Core Needle Biopsy and Surgical Specimen in Thyroid Tumors Using a Deep Learning Model
    Faridul Haq, Andrey Bychkov, Chan Kwon Jung
    Endocrine Pathology.2022; 33(4): 472.     CrossRef
  • Diagnostic performance of core needle biopsy as a first‐line diagnostic tool for thyroid nodules according to ultrasound patterns: Comparison with fine needle aspiration using propensity score matching analysis
    Hye Shin Ahn, Inyoung Youn, Dong Gyu Na, Soo Jin Kim, Mi Yeon Lee
    Clinical Endocrinology.2021; 94(3): 494.     CrossRef
  • Hydrodissection: A Novel Approach for Safe Core Needle Biopsy of Small High-Risk Subcapsular Thyroid Nodules
    Hojat Ebrahiminik, Hossein Chegeni, Javad Jalili, Rambod Salouti, Hadi Rokni, Afshin Mohammadi, Ali Mosaddegh Khah, Seyed Mohammad Tavangar, Zahra Ebrahiminik
    CardioVascular and Interventional Radiology.2021; 44(10): 1651.     CrossRef
  • Application of biomarkers in the diagnosis of uncertain samples of core needle biopsy of thyroid nodules
    Yan Xiong, Xin Li, Li Liang, Dong Li, Limin Yan, Xueying Li, Jiting Di, Ting Li
    Virchows Archiv.2021; 479(5): 961.     CrossRef
  • VE1 immunohistochemistry is an adjunct tool for detection of BRAFV600E mutation: Validation in thyroid cancer patients
    Faiza A. Rashid, Sobia Tabassum, Mosin S. Khan, Hifzur R. Ansari, Muhammad Asif, Ahmareen K. Sheikh, Syed Sameer Aga
    Journal of Clinical Laboratory Analysis.2021;[Epub]     CrossRef
  • The Diagnostic Value of the American College of Radiology Thyroid Imaging Reporting and Data System Classification and Shear-Wave Elastography for the Differentiation of Thyroid Nodules
    Gül Bora Makal, Aydın Aslan
    Ultrasound in Medicine & Biology.2021; 47(5): 1227.     CrossRef
  • Comparison of the diagnostic performance of the modified Korean Thyroid Imaging Reporting and Data System for thyroid malignancy with three international guidelines
    Eun Ju Ha, Jung Hee Shin, Dong Gyu Na, So Lyung Jung, Young Hen Lee, Wooyul Paik, Min Ji Hong, Yeo Koon Kim, Chang Yoon Lee
    Ultrasonography.2021; 40(4): 594.     CrossRef
  • VE1 Immunohistochemistry Improves the Limit of Genotyping for Detecting BRAFV600E Mutation in Papillary Thyroid Cancer
    Sonam Choden, Somboon Keelawat, Chan Kwon Jung, Andrey Bychkov
    Cancers.2020; 12(3): 596.     CrossRef
  • The 2019 core-needle biopsy practice guidelines
    So Yeong Jeong, Jung Hwan Baek
    Ultrasonography.2020; 39(3): 311.     CrossRef
  • Re: The 2019 core-needle biopsy practice guidelines
    Ji-hoon Kim
    Ultrasonography.2020; 39(3): 313.     CrossRef
Original Article
Article image
A Multi-institutional Study of Prevalence and Clinicopathologic Features of Non-invasive Follicular Thyroid Neoplasm with Papillary-like Nuclear Features (NIFTP) in Korea
Ja Yeong Seo, Ji Hyun Park, Ju Yeon Pyo, Yoon Jin Cha, Chan Kwon Jung, Dong Eun Song, Jeong Ja Kwak, So Yeon Park, Hee Young Na, Jang-Hee Kim, Jae Yeon Seok, Hee Sung Kim, Soon Won Hong
J Pathol Transl Med. 2019;53(6):378-385.   Published online October 21, 2019
DOI: https://doi.org/10.4132/jptm.2019.09.18
  • 7,245 View
  • 336 Download
  • 15 Web of Science
  • 16 Crossref
AbstractAbstract PDF
Background
In the present multi-institutional study, the prevalence and clinicopathologic characteristics of non-invasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP) were evaluated among Korean patients who underwent thyroidectomy for papillary thyroid carcinoma (PTC).
Methods
Data from 18,819 patients with PTC from eight university hospitals between January 2012 and February 2018 were retrospectively evaluated. Pathology reports of all PTCs and slides of potential NIFTP cases were reviewed. The strict criterion of no papillae was applied for the diagnosis of NIFTP. Due to assumptions regarding misclassification of NIFTP as non-PTC tumors, the lower boundary of NIFTP prevalence among PTCs was estimated. Mutational analysis for BRAF and three RAS isoforms was performed in 27 randomly selected NIFTP cases.
Results
The prevalence of NIFTP was 1.3% (238/18,819) of all PTCs when the same histologic criteria were applied for NIFTP regardless of the tumor size but decreased to 0.8% (152/18,819) when tumors ≥1 cm in size were included. The mean follow-up was 37.7 months and no patient with NIFTP had evidence of lymph node metastasis, distant metastasis, or disease recurrence during the follow-up period. A difference in prevalence of NIFTP before and after NIFTP introduction was not observed. BRAFV600E mutation was not found in NIFTP. The mutation rate for the three RAS genes was 55.6% (15/27).
Conclusions
The low prevalence and indolent clinical outcome of NIFTP in Korea was confirmed using the largest number of cases to date. The introduction of NIFTP may have a small overall impact in Korean practice.

Citations

Citations to this article as recorded by  
  • Case report & review: Bilateral NIFTP harboring concomitant HRAS and KRAS mutation: Report of an unusual case and literature review
    Marianna Rita Brogna, Francesca Collina, Maria Grazia Chiofalo, Debora De Bartolo, Angela Montone, Maria Rosaria Schiano, Michele Del Sesto, Nubia Pizza, Gerardo Ferrara
    Molecular Carcinogenesis.2024; 63(12): 2273.     CrossRef
  • Non-invasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP): what do we need to know?
    Andrés Coca-Pelaz, Juan P. Rodrigo, Abbas Agaimy, Dana M. Hartl, Göran Stenman, Vincent Vander Poorten, Antti A. Mäkitie, Mark Zafereo, Karthik N. Rao, Gregory W. Randolph, Alessandra Rinaldo, Alfio Ferlito
    Virchows Archiv.2024; 485(6): 977.     CrossRef
  • Study of non-invasive follicular thyroid neoplasm: A borderline entity
    Rupali Bavikar, Ruchi S. Randive, Anubhaw Verma, Madhuri Singh, Vidya Viswanathan, Arpana Dharwadkar
    Journal of Cancer Research and Therapeutics.2024; 20(5): 1365.     CrossRef
  • Analysis of a pre-2017 follicular variant papillary thyroid carcinoma cohort reclassified as noninvasive follicular thyroid neoplasm with papillary-like features (NIFTP): an 11-year retrospective single institution experience
    Shaham Beg, Sana Irfan Khan, Isabella Cui, Theresa Scognamiglio, Rema Rao
    Journal of the American Society of Cytopathology.2023; 12(2): 112.     CrossRef
  • Noninvasive Follicular Thyroid Neoplasm With Papillary-Like Nuclear Features: What a Surgeon Should Know
    Jabir Alharbi, Thamer Alraddadi, Haneen Sebeih, Mohammad A Alessa, Haddad H Alkaf, Ahmed Bahaj, Sherif K Abdelmonim
    Cureus.2023;[Epub]     CrossRef
  • NTRK Fusion in a Cohort of BRAF p. V600E Wild-Type Papillary Thyroid Carcinomas
    Seung Eun Lee, Mi-Sook Lee, Heejin Bang, Mi Young Kim, Yoon-La Choi, Young Lyun Oh
    Modern Pathology.2023; 36(8): 100180.     CrossRef
  • A Comprehensive Study on the Diagnosis and Management of Noninvasive Follicular Thyroid Neoplasm with Papillary-Like Nuclear Features
    Bayan A. Alzumaili, Lauren N. Krumeich, Reagan Collins, Timothy Kravchenko, Emad I. Ababneh, Adam S. Fisch, William C. Faquin, Vania Nosé, Maria Martinez-Lage, Gregory W. Randolph, Rajshri M. Gartland, Carrie C. Lubitz, Peter M. Sadow
    Thyroid.2023; 33(5): 566.     CrossRef
  • Clinical-Pathological and Molecular Evaluation of 451 NIFTP Patients from a Single Referral Center
    Paola Vignali, Agnese Proietti, Elisabetta Macerola, Anello Marcello Poma, Liborio Torregrossa, Clara Ugolini, Alessio Basolo, Antonio Matrone, Teresa Rago, Ferruccio Santini, Rossella Elisei, Gabriele Materazzi, Fulvio Basolo
    Cancers.2022; 14(2): 420.     CrossRef
  • Noninvasive follicular thyroid neoplasm with papillary-like nuclear features: its updated diagnostic criteria, preoperative cytologic diagnoses and impact on the risk of malignancy
    Hee Young Na, So Yeon Park
    Journal of Pathology and Translational Medicine.2022; 56(6): 319.     CrossRef
  • SFE-AFCE-SFMN 2022 Consensus on the management of thyroid nodules : Follow-up: How and how long?
    Sophie Leboulleux, Livia Lamartina, Emmanuelle Lecornet Sokol, Fabrice Menegaux, Laurence Leenhardt, Gilles Russ
    Annales d'Endocrinologie.2022; 83(6): 407.     CrossRef
  • Different Threshold of Malignancy for RAS-like Thyroid Tumors Causes Significant Differences in Thyroid Nodule Practice
    Kennichi Kakudo
    Cancers.2022; 14(3): 812.     CrossRef
  • Clinicopathological parameters for predicting non-invasive follicular thyroid neoplasm with papillary features (NIFTP)
    Eunju Jang, Kwangsoon Kim, Chan Kwon Jung, Ja Seong Bae, Jeong Soo Kim
    Therapeutic Advances in Endocrinology and Metabolism.2021;[Epub]     CrossRef
  • The Incidence of Noninvasive Follicular Thyroid Neoplasm with Papillary-Like Nuclear Features: A Meta-Analysis Assessing Worldwide Impact of the Reclassification
    Chanchal Rana, Huy Gia Vuong, Thu Quynh Nguyen, Hoang Cong Nguyen, Chan Kwon Jung, Kennichi Kakudo, Andrey Bychkov
    Thyroid.2021;[Epub]     CrossRef
  • The Genomic Landscape of Thyroid Cancer Tumourigenesis and Implications for Immunotherapy
    Amandeep Singh, Jeehoon Ham, Joseph William Po, Navin Niles, Tara Roberts, Cheok Soon Lee
    Cells.2021; 10(5): 1082.     CrossRef
  • Noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP) is rare, benign lesion using modified stringent diagnostic criteria: Reclassification and outcome study
    David Cubero Rego, Hwajeong Lee, Anne Boguniewicz, Timothy A. Jennings
    Annals of Diagnostic Pathology.2020; 44: 151439.     CrossRef
  • Noninvasive Follicular Thyroid Neoplasm with Papillary-Like Nuclear Features: From Echography to Genetic Profile
    Francesca Maletta, Enrico Costantino Falco, Alessandro Gambella, Jasna Metovic, Mauro Papotti
    The Tohoku Journal of Experimental Medicine.2020; 252(3): 209.     CrossRef
Review
Artificial Intelligence in Pathology
Hye Yoon Chang, Chan Kwon Jung, Junwoo Isaac Woo, Sanghun Lee, Joonyoung Cho, Sun Woo Kim, Tae-Yeong Kwak
J Pathol Transl Med. 2019;53(1):1-12.   Published online December 28, 2018
DOI: https://doi.org/10.4132/jptm.2018.12.16
  • 27,502 View
  • 1,254 Download
  • 117 Web of Science
  • 132 Crossref
AbstractAbstract PDF
As in other domains, artificial intelligence is becoming increasingly important in medicine. In particular,deep learning-based pattern recognition methods can advance the field of pathology byincorporating clinical, radiologic, and genomic data to accurately diagnose diseases and predictpatient prognoses. In this review, we present an overview of artificial intelligence, the brief historyof artificial intelligence in the medical domain, recent advances in artificial intelligence applied topathology, and future prospects of pathology driven by artificial intelligence.

Citations

Citations to this article as recorded by  
  • Exploring the status of artificial intelligence for healthcare research in Africa: a bibliometric and thematic analysis
    Tabu S. Kondo, Salim A. Diwani, Ally S. Nyamawe, Mohamed M. Mjahidi
    AI and Ethics.2025; 5(1): 117.     CrossRef
  • Artificial intelligence versus human analysis: Interpreting data in elderly fat reduction study
    Piotr Sporek, Mariusz Konieczny
    Advances in Integrative Medicine.2025; 12(1): 13.     CrossRef
  • Artificial intelligence in healthcare applications targeting cancer diagnosis—part I: data structure, preprocessing and data organization
    Anna Luíza Damaceno Araújo, Marcelo Sperandio, Giovanna Calabrese, Sarah S. Faria, Diego Armando Cardona Cardenas, Manoela Domingues Martins, Cristina Saldivia-Siracusa, Daniela Giraldo-Roldán, Caique Mariano Pedroso, Pablo Agustin Vargas, Marcio Ajudarte
    Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology.2025; 140(1): 79.     CrossRef
  • Artificial intelligence–driven digital pathology in urological cancers: current trends and future directions
    Inyoung Paik, Geongyu Lee, Joonho Lee, Tae-Yeong Kwak, Hong Koo Ha
    Prostate International.2025;[Epub]     CrossRef
  • Optimizing deep learning for accurate blood cell classification: A study on stain normalization and fine-tuning techniques
    Mohammed Tareq Mutar, Jaffar Nouri Alalsaidissa, Mustafa Majid Hameed, Ali Almothaffar
    Iraqi Journal of Hematology.2025;[Epub]     CrossRef
  • Structural imbalance of medical resources amid population mobility and digital empowerment: a study of national and port-developed provinces in China
    Haiwei Fu, Junjie Lu
    Frontiers in Public Health.2025;[Epub]     CrossRef
  • Whole Slide Imaging Technology and Its Applications: Current and Emerging Perspectives
    Ekta Jain, Ankush Patel, Anil V. Parwani, Saba Shafi, Zoya Brar, Shivani Sharma, Sambit K. Mohanty
    International Journal of Surgical Pathology.2024; 32(3): 433.     CrossRef
  • ChatGPT as an aid for pathological diagnosis of cancer
    Shaivy Malik, Sufian Zaheer
    Pathology - Research and Practice.2024; 253: 154989.     CrossRef
  • Computational pathology: A survey review and the way forward
    Mahdi S. Hosseini, Babak Ehteshami Bejnordi, Vincent Quoc-Huy Trinh, Lyndon Chan, Danial Hasan, Xingwen Li, Stephen Yang, Taehyo Kim, Haochen Zhang, Theodore Wu, Kajanan Chinniah, Sina Maghsoudlou, Ryan Zhang, Jiadai Zhu, Samir Khaki, Andrei Buin, Fatemeh
    Journal of Pathology Informatics.2024; 15: 100357.     CrossRef
  • Applications of artificial intelligence in the field of oral and maxillofacial pathology: a systematic review and meta-analysis
    Nishath Sayed Abdul, Ganiga Channaiah Shivakumar, Sunila Bukanakere Sangappa, Marco Di Blasio, Salvatore Crimi, Marco Cicciù, Giuseppe Minervini
    BMC Oral Health.2024;[Epub]     CrossRef
  • Machine-learning models are superior to severity scoring systems for the prediction of the mortality of critically ill patients in a tertiary medical center
    Ruey-Hsing Chou, Benny Wei-Yun Hsu, Chun-Lin Yu, Tai-Yuan Chen, Shuo-Ming Ou, Kuo-Hua Lee, Vincent S. Tseng, Po-Hsun Huang, Der-Cherng Tarng
    Journal of the Chinese Medical Association.2024; 87(4): 369.     CrossRef
  • The Evaluation of Artificial Intelligence Technology for the Differentiation of Fresh Human Blood Cells From Other Species Blood in the Investigation of Crime Scenes
    Syed Sajid Hussain Shah, Ekramy Elmorsy, Rashad Qasem Ali Othman, Asmara Syed, Syed Umar Armaghan, Syed Usama Khalid Bokhari, Mahmoud E Elmorsy, Abdulhakim Bawadekji
    Cureus.2024;[Epub]     CrossRef
  • A Comparison of Diagnostic and Immunohistochemical Workup and Literature Review Capabilities of Online Artificial Intelligence Assistance Models in Pathology
    Johnika Dougan, Netra Patel, Svetoslav Bardarov
    Cureus.2024;[Epub]     CrossRef
  • ChatENT: Augmented Large Language Model for Expert Knowledge Retrieval in Otolaryngology–Head and Neck Surgery
    Cai Long, Deepak Subburam, Kayle Lowe, André dos Santos, Jessica Zhang, Sang Hwang, Neil Saduka, Yoav Horev, Tao Su, David W.J. Côté, Erin D. Wright
    Otolaryngology–Head and Neck Surgery.2024; 171(4): 1042.     CrossRef
  • Artificial intelligence in forensic medicine and related sciences – selected issues = Sztuczna inteligencja w medycynie sądowej i naukach pokrewnych – wybrane zagadnienia
    Michał Szeremeta, Julia Janica, Anna Niemcunowicz-Janica
    Archives of Forensic Medicine and Criminology.2024; 74(1): 64.     CrossRef
  • Unveiling the landscape of pathomics in personalized immunotherapy for lung cancer: a bibliometric analysis
    Lei Yuan, Zhiming Shen, Yibo Shan, Jianwei Zhu, Qi Wang, Yi Lu, Hongcan Shi
    Frontiers in Oncology.2024;[Epub]     CrossRef
  • PathEX: Make good choice for whole slide image extraction
    Xinda Yang, Ranze Zhang, Yuan Yang, Yu Zhang, Kai Chen, Alberto Marchisio
    PLOS ONE.2024; 19(8): e0304702.     CrossRef
  • Automatic point detection on cephalograms using convolutional neural networks: A two-step method
    Miki HORI, Makoto JINCHO, Tadasuke HORI, Hironao SEKINE, Akiko KATO, Ken MIYAZAWA, Tatsushi KAWAI
    Dental Materials Journal.2024; 43(5): 701.     CrossRef
  • The use of generative artificial intelligence (AI) in teaching and assessment of postgraduate students in pathology and microbiology
    Dipmala Das, Asitava Deb Roy, Subhayan Dasgupta, Rohon Das Roy
    Indian Journal of Microbiology Research.2024; 11(3): 140.     CrossRef
  • Prioritize Threat Alerts Based on False Positives Qualifiers Provided by Multiple AI Models Using Evolutionary Computation and Reinforcement Learning
    Anup Sharma, V. G. Kiran Kumar, Asmita Poojari
    Journal of The Institution of Engineers (India): Series B.2024;[Epub]     CrossRef
  • Inteligencia artificial: desafíos éticos y futuros
    Jhadson Silva Leonel, Camila Ferreira Silva Leonel, Jonas Byk, Silvania da Conceição Furtado
    Revista Bioética.2024;[Epub]     CrossRef
  • Artificial intelligence: ethical and future challenges
    Jhadson Silva Leonel, Camila Ferreira Silva Leonel, Jonas Byk, Silvania da Conceição Furtado
    Revista Bioética.2024;[Epub]     CrossRef
  • Inteligência artificial: desafios éticos e futuros
    Jhadson Silva Leonel, Camila Ferreira Silva Leonel, Jonas Byk, Silvania da Conceição Furtado
    Revista Bioética.2024;[Epub]     CrossRef
  • The Constrained-Disorder Principle Assists in Overcoming Significant Challenges in Digital Health: Moving from “Nice to Have” to Mandatory Systems
    Noa Hurvitz, Yaron Ilan
    Clinics and Practice.2023; 13(4): 994.     CrossRef
  • Building a nonclinical pathology laboratory of the future for pharmaceutical research excellence
    D.G. Rudmann, L. Bertrand, A. Zuraw, J. Deiters, M. Staup, Y. Rivenson, J. Kuklyte
    Drug Discovery Today.2023; 28(10): 103747.     CrossRef
  • Automated image analysis of keratin 7 staining can predict disease outcome in primary sclerosing cholangitis
    Nelli Sjöblom, Sonja Boyd, Anniina Manninen, Sami Blom, Anna Knuuttila, Martti Färkkilä, Johanna Arola
    Hepatology Research.2023; 53(4): 322.     CrossRef
  • Application of convolutional neural network for analyzing hepatic fibrosis in mice
    Hyun-Ji Kim, Eun Bok Baek, Ji-Hee Hwang, Minyoung Lim, Won Hoon Jung, Myung Ae Bae, Hwa-Young Son, Jae-Woo Cho
    Journal of Toxicologic Pathology.2023; 36(1): 21.     CrossRef
  • Machine Learning Techniques for Prognosis Estimation and Knowledge Discovery From Lab Test Results With Application to the COVID-19 Emergency
    Alfonso Emilio Gerevini, Roberto Maroldi, Matteo Olivato, Luca Putelli, Ivan Serina
    IEEE Access.2023; 11: 83905.     CrossRef
  • Artificial intelligence in dentistry—A review
    Hao Ding, Jiamin Wu, Wuyuan Zhao, Jukka P. Matinlinna, Michael F. Burrow, James K. H. Tsoi
    Frontiers in Dental Medicine.2023;[Epub]     CrossRef
  • Dental Age Estimation Using the Demirjian Method: Statistical Analysis Using Neural Networks
    Byung-Yoon Roh, Jong-Seok Lee, Sang-Beom Lim, Hye-Won Ryu, Su-Jeong Jeon, Ju-Heon Lee, Yo-Seob Seo, Ji-Won Ryu, Jong-Mo Ahn
    Korean Journal of Legal Medicine.2023; 47(1): 1.     CrossRef
  • The use of artificial intelligence in health care. Problems of identification of patients' conditions in the processes of detailing the diagnosis
    Mintser O
    Artificial Intelligence.2023; 28(AI.2023.28): 8.     CrossRef
  • The Effectiveness of Data Augmentation for Mature White Blood Cell Image Classification in Deep Learning — Selection of an Optimal Technique for Hematological Morphology Recognition —
    Hiroyuki NOZAKA, Kosuke KAMATA, Kazufumi YAMAGATA
    IEICE Transactions on Information and Systems.2023; E106.D(5): 707.     CrossRef
  • Rectal Cancer Stages T2 and T3 Identification Based on Asymptotic Hybrid Feature Maps
    Shujing Sun, Jiale Wu, Jian Yao, Yang Cheng, Xin Zhang, Zhihua Lu, Pengjiang Qian
    Computer Modeling in Engineering & Sciences.2023; 137(1): 923.     CrossRef
  • How to use AI in pathology
    Peter Schüffler, Katja Steiger, Wilko Weichert
    Genes, Chromosomes and Cancer.2023; 62(9): 564.     CrossRef
  • Cutting-Edge Technologies for Digital Therapeutics: A Review and Architecture Proposals for Future Directions
    Joo Hun Yoo, Harim Jeong, Tai-Myoung Chung
    Applied Sciences.2023; 13(12): 6929.     CrossRef
  • A convolutional neural network STIFMap reveals associations between stromal stiffness and EMT in breast cancer
    Connor Stashko, Mary-Kate Hayward, Jason J. Northey, Neil Pearson, Alastair J. Ironside, Johnathon N. Lakins, Roger Oria, Marie-Anne Goyette, Lakyn Mayo, Hege G. Russnes, E. Shelley Hwang, Matthew L. Kutys, Kornelia Polyak, Valerie M. Weaver
    Nature Communications.2023;[Epub]     CrossRef
  • Artificial Intelligence-Based PTEN Loss Assessment as an Early Predictor of Prostate Cancer Metastasis After Surgery: A Multicenter Retrospective Study
    Palak Patel, Stephanie Harmon, Rachael Iseman, Olga Ludkowski, Heidi Auman, Sarah Hawley, Lisa F. Newcomb, Daniel W. Lin, Peter S. Nelson, Ziding Feng, Hilary D. Boyer, Maria S. Tretiakova, Larry D. True, Funda Vakar-Lopez, Peter R. Carroll, Matthew R. Co
    Modern Pathology.2023; 36(10): 100241.     CrossRef
  • Minimum resolution requirements of digital pathology images for accurate classification
    Lydia Neary-Zajiczek, Linas Beresna, Benjamin Razavi, Vijay Pawar, Michael Shaw, Danail Stoyanov
    Medical Image Analysis.2023; 89: 102891.     CrossRef
  • Artificial Intelligence in the Pathology of Gastric Cancer
    Sangjoon Choi, Seokhwi Kim
    Journal of Gastric Cancer.2023; 23(3): 410.     CrossRef
  • Endoscopic Ultrasound-Based Artificial Intelligence Diagnosis of Pancreatic Cystic Neoplasms
    Jin-Seok Park, Seok Jeong
    The Korean Journal of Pancreas and Biliary Tract.2023; 28(3): 53.     CrossRef
  • Framework for Classifying Explainable Artificial Intelligence (XAI) Algorithms in Clinical Medicine
    Thomas Gniadek, Jason Kang, Talent Theparee, Jacob Krive
    Online Journal of Public Health Informatics.2023; 15: e50934.     CrossRef
  • A Literature Review of the Future of Oral Medicine and Radiology, Oral Pathology, and Oral Surgery in the Hands of Technology
    Ishita Singhal, Geetpriya Kaur, Dirk Neefs, Aparna Pathak
    Cureus.2023;[Epub]     CrossRef
  • AI-Powered Biomolecular-Specific and Label-Free Multispectral Imaging Rapidly Detects Malignant Neoplasm in Surgically Excised Breast Tissue Specimens
    Rishikesh Pandey, David Fournier, Gary Root, Machele Riccio, Aditya Shirvalkar, Gianfranco Zamora, Noel Daigneault, Michael Sapack, Minghao Zhong, Malini Harigopal
    Archives of Pathology & Laboratory Medicine.2023; 147(11): 1298.     CrossRef
  • Artificial intelligence for patient scheduling in the real-world health care setting: A metanarrative review
    Dacre R.T. Knight, Christopher A. Aakre, Christopher V. Anstine, Bala Munipalli, Parisa Biazar, Ghada Mitri, Jose Raul Valery, Tara Brigham, Shehzad K. Niazi, Adam I. Perlman, John D. Halamka, Abd Moain Abu Dabrh
    Health Policy and Technology.2023; 12(4): 100824.     CrossRef
  • Towards Autonomous Healthcare: Integrating Artificial Intelligence (AI) for Personalized Medicine and Disease Prediction
    Nitin Rane, Saurabh Choudhary, Jayesh Rane
    SSRN Electronic Journal.2023;[Epub]     CrossRef
  • Medical imaging and multimodal artificial intelligence models for streamlining and enhancing cancer care: opportunities and challenges
    Kevin Pierre, Manas Gupta, Abheek Raviprasad, Seyedeh Mehrsa Sadat Razavi, Anjali Patel, Keith Peters, Bruno Hochhegger, Anthony Mancuso, Reza Forghani
    Expert Review of Anticancer Therapy.2023; 23(12): 1265.     CrossRef
  • Automated differential diagnostics of respiratory diseases using an electronic stethoscope
    Diana Arhypenko, Denis Panaskin, Dmytro Babko
    Polish Journal of Medical Physics and Engineering.2023; 29(4): 208.     CrossRef
  • Application of machine learning in identification of pathogenic microbes
    Lakshmi Venkata S Kutikuppala, Kanishk K Adhit, Reewen George D Silva
    Digital Medicine.2023;[Epub]     CrossRef
  • The Beginning of a New Era
    C Nandini, Shaik Basha, Aarchi Agarawal, R Parikh Neelampari, Krishna P Miyapuram, R Jadeja Nileshwariba
    Advances in Human Biology.2023; 13(1): 4.     CrossRef
  • Artificial Intelligence in Respiratory Medicine
    K Kalaiyarasan, R Sridhar
    Journal of Association of Pulmonologist of Tamil Nadu.2023; 6(2): 53.     CrossRef
  • Automated abstraction of myocardial perfusion imaging reports using natural language processing
    Parija Sharedalal, Ajay Singh, Neal Shah, Diwakar Jain
    Journal of Nuclear Cardiology.2022; 29(3): 1188.     CrossRef
  • Polyploid giant cancer cell characterization: New frontiers in predicting response to chemotherapy in breast cancer
    Geetanjali Saini, Shriya Joshi, Chakravarthy Garlapati, Hongxiao Li, Jun Kong, Jayashree Krishnamurthy, Michelle D. Reid, Ritu Aneja
    Seminars in Cancer Biology.2022; 81: 220.     CrossRef
  • A Comprehensive Review of Markov Random Field and Conditional Random Field Approaches in Pathology Image Analysis
    Yixin Li, Chen Li, Xiaoyan Li, Kai Wang, Md Mamunur Rahaman, Changhao Sun, Hao Chen, Xinran Wu, Hong Zhang, Qian Wang
    Archives of Computational Methods in Engineering.2022; 29(1): 609.     CrossRef
  • Artificial intelligence in oncology: From bench to clinic
    Jamal Elkhader, Olivier Elemento
    Seminars in Cancer Biology.2022; 84: 113.     CrossRef
  • Yeast‐like organisms phagocytosed by circulating neutrophils: Evidence of disseminated histoplasmosis
    Yue Zhao, Jenna McCracken, Endi Wang
    International Journal of Laboratory Hematology.2022; 44(1): 51.     CrossRef
  • Whole-slide imaging, tissue image analysis, and artificial intelligence in veterinary pathology: An updated introduction and review
    Aleksandra Zuraw, Famke Aeffner
    Veterinary Pathology.2022; 59(1): 6.     CrossRef
  • A comprehensive review of computer-aided whole-slide image analysis: from datasets to feature extraction, segmentation, classification and detection approaches
    Xintong Li, Chen Li, Md Mamunur Rahaman, Hongzan Sun, Xiaoqi Li, Jian Wu, Yudong Yao, Marcin Grzegorzek
    Artificial Intelligence Review.2022; 55(6): 4809.     CrossRef
  • Liquid Biopsy and Artificial Intelligence as Tools to Detect Signatures of Colorectal Malignancies: A Modern Approach in Patient’s Stratification
    Octav Ginghina, Ariana Hudita, Marius Zamfir, Andrada Spanu, Mara Mardare, Irina Bondoc, Laura Buburuzan, Sergiu Emil Georgescu, Marieta Costache, Carolina Negrei, Cornelia Nitipir, Bianca Galateanu
    Frontiers in Oncology.2022;[Epub]     CrossRef
  • Automated bone marrow cytology using deep learning to generate a histogram of cell types
    Rohollah Moosavi Tayebi, Youqing Mu, Taher Dehkharghanian, Catherine Ross, Monalisa Sur, Ronan Foley, Hamid R. Tizhoosh, Clinton J. V. Campbell
    Communications Medicine.2022;[Epub]     CrossRef
  • Risultati di esami di laboratorio per intelligenza artificiale e "machine learning"
    Marco PRADELLA
    La Rivista Italiana della Medicina di Laboratorio.2022;[Epub]     CrossRef
  • The Deception of Certainty: how Non-Interpretable Machine Learning Outcomes Challenge the Epistemic Authority of Physicians. A deliberative-relational Approach
    Florian Funer
    Medicine, Health Care and Philosophy.2022; 25(2): 167.     CrossRef
  • Deep discriminative learning model with calibrated attention map for the automated diagnosis of diffuse large B-cell lymphoma
    Sautami Basu, Ravinder Agarwal, Vishal Srivastava
    Biomedical Signal Processing and Control.2022; 76: 103728.     CrossRef
  • Question and Answer Techniques for Financial Audits in Universities Based on Deep Learning
    Qiang Li, Hangjun Che
    Mathematical Problems in Engineering.2022; 2022: 1.     CrossRef
  • Noninvasive Screening Tool for Hyperkalemia Using a Single-Lead Electrocardiogram and Deep Learning: Development and Usability Study
    Erdenebayar Urtnasan, Jung Hun Lee, Byungjin Moon, Hee Young Lee, Kyuhee Lee, Hyun Youk
    JMIR Medical Informatics.2022; 10(6): e34724.     CrossRef
  • Impact of artificial intelligence on pathologists’ decisions: an experiment
    Julien Meyer, April Khademi, Bernard Têtu, Wencui Han, Pria Nippak, David Remisch
    Journal of the American Medical Informatics Association.2022; 29(10): 1688.     CrossRef
  • Rapid Screening Using Pathomorphologic Interpretation to Detect BRAFV600E Mutation and Microsatellite Instability in Colorectal Cancer
    Satoshi Fujii, Daisuke Kotani, Masahiro Hattori, Masato Nishihara, Toshihide Shikanai, Junji Hashimoto, Yuki Hama, Takuya Nishino, Mizuto Suzuki, Ayatoshi Yoshidumi, Makoto Ueno, Yoshito Komatsu, Toshiki Masuishi, Hiroki Hara, Taito Esaki, Yoshiaki Nakamu
    Clinical Cancer Research.2022; 28(12): 2623.     CrossRef
  • Using Deep Learning to Predict Final HER2 Status in Invasive Breast Cancers That are Equivocal (2+) by Immunohistochemistry
    Sean A. Rasmussen, Valerie J. Taylor, Alexi P. Surette, Penny J. Barnes, Gillian C. Bethune
    Applied Immunohistochemistry & Molecular Morphology.2022; 30(10): 668.     CrossRef
  • Deep Neural Network for the Prediction of KRAS Genotype in Rectal Cancer
    Waleed M Ghareeb, Eman Draz, Khaled Madbouly, Ahmed H Hussein, Mohammed Faisal, Wagdi Elkashef, Mona Hany Emile, Marcus Edelhamre, Seon Hahn Kim, Sameh Hany Emile
    Journal of the American College of Surgeons.2022; 235(3): 482.     CrossRef
  • Next Generation Digital Pathology: Emerging Trends and Measurement Challenges for Molecular Pathology
    Alex Dexter, Dimitrios Tsikritsis, Natalie A. Belsey, Spencer A. Thomas, Jenny Venton, Josephine Bunch, Marina Romanchikova
    Journal of Molecular Pathology.2022; 3(3): 168.     CrossRef
  • Animation Design of Multisensor Data Fusion Based on Optimized AVOD Algorithm
    Li Ding, Guobing Wei, Kai Zhang, Gengxin Sun
    Journal of Sensors.2022; 2022: 1.     CrossRef
  • Study on Machine Translation Teaching Model Based on Translation Parallel Corpus and Exploitation for Multimedia Asian Information Processing
    Yan Gong
    ACM Transactions on Asian and Low-Resource Language Information Processing.2022;[Epub]     CrossRef
  • Analysis and Estimation of Pathological Data and Findings with Deep Learning Methods
    Ahmet Anıl ŞAKIR, Ali Hakan IŞIK, Özlem ÖZMEN, Volkan İPEK
    Veterinary Journal of Mehmet Akif Ersoy University.2022; 7(3): 175.     CrossRef
  • Artificial Intelligence in Pathology: Friend or Enemy?
    Selim Sevim, Ezgi Dicle Serbes, Murat Bahadır, Mustafa Said Kartal, Serpil Dizbay Sak
    Journal of Ankara University Faculty of Medicine.2022; 75(1): 13.     CrossRef
  • Assessment of knowledge, attitude, and practice regarding artificial intelligence in histopathology
    M. Indu, Vidya Gurram Shankar, Latha Mary Cherian, Revathi Krishna, Sabu Paul, Pradeesh Sathyan
    Saudi Journal of Oral Sciences.2022; 9(3): 157.     CrossRef
  • Evaluation Challenges in the Validation of B7-H3 as Oral Tongue Cancer Prognosticator
    Meri Sieviläinen, Anna Maria Wirsing, Aini Hyytiäinen, Rabeia Almahmoudi, Priscila Rodrigues, Inger-Heidi Bjerkli, Pirjo Åström, Sanna Toppila-Salmi, Timo Paavonen, Ricardo D. Coletta, Elin Hadler-Olsen, Tuula Salo, Ahmed Al-Samadi
    Head and Neck Pathology.2021; 15(2): 469.     CrossRef
  • Amsterdam International Consensus Meeting: tumor response scoring in the pathology assessment of resected pancreatic cancer after neoadjuvant therapy
    Boris V. Janssen, Faik Tutucu, Stijn van Roessel, Volkan Adsay, Olca Basturk, Fiona Campbell, Claudio Doglioni, Irene Esposito, Roger Feakins, Noriyoshi Fukushima, Anthony J. Gill, Ralph H. Hruban, Jeffrey Kaplan, Bas Groot Koerkamp, Seung-Mo Hong, Alyssa
    Modern Pathology.2021; 34(1): 4.     CrossRef
  • Fabrication of ultra-thin 2D covalent organic framework nanosheets and their application in functional electronic devices
    Weikang Wang, Weiwei Zhao, Haotian Xu, Shujuan Liu, Wei Huang, Qiang Zhao
    Coordination Chemistry Reviews.2021; 429: 213616.     CrossRef
  • Generalizability of Deep Learning System for the Pathologic Diagnosis of Various Cancers
    Hyun-Jong Jang, In Hye Song, Sung Hak Lee
    Applied Sciences.2021; 11(2): 808.     CrossRef
  • Integrated digital pathology at scale: A solution for clinical diagnostics and cancer research at a large academic medical center
    Peter J Schüffler, Luke Geneslaw, D Vijay K Yarlagadda, Matthew G Hanna, Jennifer Samboy, Evangelos Stamelos, Chad Vanderbilt, John Philip, Marc-Henri Jean, Lorraine Corsale, Allyne Manzo, Neeraj H G Paramasivam, John S Ziegler, Jianjiong Gao, Juan C Peri
    Journal of the American Medical Informatics Association.2021; 28(9): 1874.     CrossRef
  • Translational Applications of Artificial Intelligence and Machine Learning for Diagnostic Pathology in Lymphoid Neoplasms: A Comprehensive and Evolutive Analysis
    Julia Moran-Sanchez, Antonio Santisteban-Espejo, Miguel Angel Martin-Piedra, Jose Perez-Requena, Marcial Garcia-Rojo
    Biomolecules.2021; 11(6): 793.     CrossRef
  • Development and operation of a digital platform for sharing pathology image data
    Yunsook Kang, Yoo Jung Kim, Seongkeun Park, Gun Ro, Choyeon Hong, Hyungjoon Jang, Sungduk Cho, Won Jae Hong, Dong Un Kang, Jonghoon Chun, Kyoungbun Lee, Gyeong Hoon Kang, Kyoung Chul Moon, Gheeyoung Choe, Kyu Sang Lee, Jeong Hwan Park, Won-Ki Jeong, Se Yo
    BMC Medical Informatics and Decision Making.2021;[Epub]     CrossRef
  • Sliding window based deep ensemble system for breast cancer classification
    Amin Alqudah, Ali Mohammad Alqudah
    Journal of Medical Engineering & Technology.2021; 45(4): 313.     CrossRef
  • Artificial intelligence and computational pathology
    Miao Cui, David Y. Zhang
    Laboratory Investigation.2021; 101(4): 412.     CrossRef
  • Effects of Image Quantity and Image Source Variation on Machine Learning Histology Differential Diagnosis Models
    Elham Vali-Betts, Kevin J. Krause, Alanna Dubrovsky, Kristin Olson, John Paul Graff, Anupam Mitra, Ananya Datta-Mitra, Kenneth Beck, Aristotelis Tsirigos, Cynthia Loomis, Antonio Galvao Neto, Esther Adler, Hooman H. Rashidi
    Journal of Pathology Informatics.2021; 12(1): 5.     CrossRef
  • Feasibility of deep learning‐based fully automated classification of microsatellite instability in tissue slides of colorectal cancer
    Sung Hak Lee, In Hye Song, Hyun‐Jong Jang
    International Journal of Cancer.2021; 149(3): 728.     CrossRef
  • Artificial intelligence in healthcare
    Yamini D Shah, Shailvi M Soni, Manish P Patel
    Indian Journal of Pharmacy and Pharmacology.2021; 8(2): 102.     CrossRef
  • Proof of Concept for a Deep Learning Algorithm for Identification and Quantification of Key Microscopic Features in the Murine Model of DSS-Induced Colitis
    Agathe Bédard, Thomas Westerling-Bui, Aleksandra Zuraw
    Toxicologic Pathology.2021; 49(4): 897.     CrossRef
  • An empirical analysis of machine learning frameworks for digital pathology in medical science
    S.K.B. Sangeetha, R Dhaya, Dhruv T Shah, R Dharanidharan, K. Praneeth Sai Reddy
    Journal of Physics: Conference Series.2021; 1767(1): 012031.     CrossRef
  • Application of Single-Cell Approaches to Study Myeloproliferative Neoplasm Biology
    Daniel Royston, Adam J. Mead, Bethan Psaila
    Hematology/Oncology Clinics of North America.2021; 35(2): 279.     CrossRef
  • Idiosyncratic Drug-Induced Liver Injury (DILI) and Herb-Induced Liver Injury (HILI): Diagnostic Algorithm Based on the Quantitative Roussel Uclaf Causality Assessment Method (RUCAM)
    Rolf Teschke, Gaby Danan
    Diagnostics.2021; 11(3): 458.     CrossRef
  • Searching Images for Consensus
    Hamid R. Tizhoosh, Phedias Diamandis, Clinton J.V. Campbell, Amir Safarpoor, Shivam Kalra, Danial Maleki, Abtin Riasatian, Morteza Babaie
    The American Journal of Pathology.2021; 191(10): 1702.     CrossRef
  • Automated Classification and Segmentation in Colorectal Images Based on Self‐Paced Transfer Network
    Yao Yao, Shuiping Gou, Ru Tian, Xiangrong Zhang, Shuixiang He, Zhiguo Zhou
    BioMed Research International.2021;[Epub]     CrossRef
  • Artificial intelligence and sleep: Advancing sleep medicine
    Nathaniel F. Watson, Christopher R. Fernandez
    Sleep Medicine Reviews.2021; 59: 101512.     CrossRef
  • Prospective Of Artificial Intelligence: Emerging Trends In Modern Biosciences Research
    Pradeep Kumar, Ajit Kumar Singh Yadav, Abhishek Singh
    IOP Conference Series: Materials Science and Engineering.2021; 1020(1): 012008.     CrossRef
  • Use and Control of Artificial Intelligence in Patients Across the Medical Workflow: Single-Center Questionnaire Study of Patient Perspectives
    Simon Lennartz, Thomas Dratsch, David Zopfs, Thorsten Persigehl, David Maintz, Nils Große Hokamp, Daniel Pinto dos Santos
    Journal of Medical Internet Research.2021; 23(2): e24221.     CrossRef
  • HEAL: an automated deep learning framework for cancer histopathology image analysis
    Yanan Wang, Nicolas Coudray, Yun Zhao, Fuyi Li, Changyuan Hu, Yao-Zhong Zhang, Seiya Imoto, Aristotelis Tsirigos, Geoffrey I Webb, Roger J Daly, Jiangning Song, Zhiyong Lu
    Bioinformatics.2021; 37(22): 4291.     CrossRef
  • A Review of Applications of Artificial Intelligence in Gastroenterology
    Khalid Nawab, Ravi Athwani, Awais Naeem, Muhammad Hamayun, Momna Wazir
    Cureus.2021;[Epub]     CrossRef
  • Evaluating Cancer-Related Biomarkers Based on Pathological Images: A Systematic Review
    Xiaoliang Xie, Xulin Wang, Yuebin Liang, Jingya Yang, Yan Wu, Li Li, Xin Sun, Pingping Bing, Binsheng He, Geng Tian, Xiaoli Shi
    Frontiers in Oncology.2021;[Epub]     CrossRef
  • Deep learning-based histopathological segmentation for whole slide images of colorectal cancer in a compressed domain
    Hyeongsub Kim, Hongjoon Yoon, Nishant Thakur, Gyoyeon Hwang, Eun Jung Lee, Chulhong Kim, Yosep Chong
    Scientific Reports.2021;[Epub]     CrossRef
  • Deep Learning on Oral Squamous Cell Carcinoma Ex Vivo Fluorescent Confocal Microscopy Data: A Feasibility Study
    Veronika Shavlokhova, Sameena Sandhu, Christa Flechtenmacher, Istvan Koveshazi, Florian Neumeier, Víctor Padrón-Laso, Žan Jonke, Babak Saravi, Michael Vollmer, Andreas Vollmer, Jürgen Hoffmann, Michael Engel, Oliver Ristow, Christian Freudlsperger
    Journal of Clinical Medicine.2021; 10(22): 5326.     CrossRef
  • A Pathologist-Annotated Dataset for Validating Artificial Intelligence: A Project Description and Pilot Study
    Sarah N. Dudgeon, Si Wen, Matthew G. Hanna, Rajarsi Gupta, Mohamed Amgad, Manasi Sheth, Hetal Marble, Richard Huang, Markus D. Herrmann, Clifford H. Szu, Darick Tong, Bruce Werness, Evan Szu, Denis Larsimont, Anant Madabhushi, Evangelos Hytopoulos, Weijie
    Journal of Pathology Informatics.2021; 12(1): 45.     CrossRef
  • Artificial Intelligence in Medicine: A Multinational Multi-Center Survey on the Medical and Dental Students' Perception
    Sotirios Bisdas, Constantin-Cristian Topriceanu, Zosia Zakrzewska, Alexandra-Valentina Irimia, Loizos Shakallis, Jithu Subhash, Maria-Madalina Casapu, Jose Leon-Rojas, Daniel Pinto dos Santos, Dilys Miriam Andrews, Claudia Zeicu, Ahmad Mohammad Bouhuwaish
    Frontiers in Public Health.2021;[Epub]     CrossRef
  • Digital/Computational Technology for Molecular Cytology Testing: A Short Technical Note with Literature Review
    Robert Y. Osamura, Naruaki Matsui, Masato Kawashima, Hiroyasu Saiga, Maki Ogura, Tomoharu Kiyuna
    Acta Cytologica.2021; 65(4): 342.     CrossRef
  • Advances in Digital Pathology: From Artificial Intelligence to Label-Free Imaging
    Frederik Großerueschkamp, Hendrik Jütte, Klaus Gerwert, Andrea Tannapfel
    Visceral Medicine.2021; 37(6): 482.     CrossRef
  • Feasibility of fully automated classification of whole slide images based on deep learning
    Kyung-Ok Cho, Sung Hak Lee, Hyun-Jong Jang
    The Korean Journal of Physiology & Pharmacology.2020; 24(1): 89.     CrossRef
  • Same same but different: A Web‐based deep learning application revealed classifying features for the histopathologic distinction of cortical malformations
    Joshua Kubach, Angelika Muhlebner‐Fahrngruber, Figen Soylemezoglu, Hajime Miyata, Pitt Niehusmann, Mrinalini Honavar, Fabio Rogerio, Se‐Hoon Kim, Eleonora Aronica, Rita Garbelli, Samuel Vilz, Alexander Popp, Stefan Walcher, Christoph Neuner, Michael Schol
    Epilepsia.2020; 61(3): 421.     CrossRef
  • Segmentation and Classification in Digital Pathology for Glioma Research: Challenges and Deep Learning Approaches
    Tahsin Kurc, Spyridon Bakas, Xuhua Ren, Aditya Bagari, Alexandre Momeni, Yue Huang, Lichi Zhang, Ashish Kumar, Marc Thibault, Qi Qi, Qian Wang, Avinash Kori, Olivier Gevaert, Yunlong Zhang, Dinggang Shen, Mahendra Khened, Xinghao Ding, Ganapathy Krishnamu
    Frontiers in Neuroscience.2020;[Epub]     CrossRef
  • Artificial intelligence as the next step towards precision pathology
    B. Acs, M. Rantalainen, J. Hartman
    Journal of Internal Medicine.2020; 288(1): 62.     CrossRef
  • Introduction to digital pathology and computer-aided pathology
    Soojeong Nam, Yosep Chong, Chan Kwon Jung, Tae-Yeong Kwak, Ji Youl Lee, Jihwan Park, Mi Jung Rho, Heounjeong Go
    Journal of Pathology and Translational Medicine.2020; 54(2): 125.     CrossRef
  • Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine
    Zeeshan Ahmed, Khalid Mohamed, Saman Zeeshan, XinQi Dong
    Database.2020;[Epub]     CrossRef
  • Scoring pleurisy in slaughtered pigs using convolutional neural networks
    Abigail R. Trachtman, Luca Bergamini, Andrea Palazzi, Angelo Porrello, Andrea Capobianco Dondona, Ercole Del Negro, Andrea Paolini, Giorgio Vignola, Simone Calderara, Giuseppe Marruchella
    Veterinary Research.2020;[Epub]     CrossRef
  • Current Status of Computational Intelligence Applications in Dermatological Clinical Practice
    Carmen Rodríguez-Cerdeira, José Luís González-Cespón, Roberto Arenas
    The Open Dermatology Journal.2020; 14(1): 6.     CrossRef
  • New unified insights on deep learning in radiological and pathological images: Beyond quantitative performances to qualitative interpretation
    Yoichi Hayashi
    Informatics in Medicine Unlocked.2020; 19: 100329.     CrossRef
  • Artificial Intelligence in Cardiology: Present and Future
    Francisco Lopez-Jimenez, Zachi Attia, Adelaide M. Arruda-Olson, Rickey Carter, Panithaya Chareonthaitawee, Hayan Jouni, Suraj Kapa, Amir Lerman, Christina Luong, Jose R. Medina-Inojosa, Peter A. Noseworthy, Patricia A. Pellikka, Margaret M. Redfield, Vero
    Mayo Clinic Proceedings.2020; 95(5): 1015.     CrossRef
  • Artificial intelligence in oncology
    Hideyuki Shimizu, Keiichi I. Nakayama
    Cancer Science.2020; 111(5): 1452.     CrossRef
  • Artificial intelligence and the future of global health
    Nina Schwalbe, Brian Wahl
    The Lancet.2020; 395(10236): 1579.     CrossRef
  • The future of pathology is digital
    J.D. Pallua, A. Brunner, B. Zelger, M. Schirmer, J. Haybaeck
    Pathology - Research and Practice.2020; 216(9): 153040.     CrossRef
  • Weakly-supervised learning for lung carcinoma classification using deep learning
    Fahdi Kanavati, Gouji Toyokawa, Seiya Momosaki, Michael Rambeau, Yuka Kozuma, Fumihiro Shoji, Koji Yamazaki, Sadanori Takeo, Osamu Iizuka, Masayuki Tsuneki
    Scientific Reports.2020;[Epub]     CrossRef
  • The use of artificial intelligence, machine learning and deep learning in oncologic histopathology
    Ahmed S. Sultan, Mohamed A. Elgharib, Tiffany Tavares, Maryam Jessri, John R. Basile
    Journal of Oral Pathology & Medicine.2020; 49(9): 849.     CrossRef
  • Convergence of Digital Pathology and Artificial Intelligence Tools in Anatomic Pathology Practice: Current Landscape and Future Directions
    Anil V. Parwani, Mahul B. Amin
    Advances in Anatomic Pathology.2020; 27(4): 221.     CrossRef
  • Advances in tissue-based imaging: impact on oncology research and clinical practice
    Arman Rahman, Chowdhury Jahangir, Seodhna M. Lynch, Nebras Alattar, Claudia Aura, Niamh Russell, Fiona Lanigan, William M. Gallagher
    Expert Review of Molecular Diagnostics.2020; 20(10): 1027.     CrossRef
  • Current Trends of Artificial Intelligence for Colorectal Cancer Pathology Image Analysis: A Systematic Review
    Nishant Thakur, Hongjun Yoon, Yosep Chong
    Cancers.2020; 12(7): 1884.     CrossRef
  • Explainable Machine Learning Model for Predicting GI Bleed Mortality in the Intensive Care Unit
    Farah Deshmukh, Shamel S. Merchant
    American Journal of Gastroenterology.2020; 115(10): 1657.     CrossRef
  • Prediction of clinically actionable genetic alterations from colorectal cancer histopathology images using deep learning
    Hyun-Jong Jang, Ahwon Lee, J Kang, In Hye Song, Sung Hak Lee
    World Journal of Gastroenterology.2020; 26(40): 6207.     CrossRef
  • Application of system analysis methods for modeling the development of hand-arm vibration syndrome: problems and approaches to solution
    M P Diakovich, M V Krivov
    Journal of Physics: Conference Series.2020; 1661(1): 012029.     CrossRef
  • Histo-ELISA technique for quantification and localization of tissue components
    Zhongmin Li, Silvia Goebel, Andreas Reimann, Martin Ungerer
    Scientific Reports.2020;[Epub]     CrossRef
  • Role of artificial intelligence in diagnostic oral pathology-A modern approach
    AyinampudiBhargavi Krishna, Azra Tanveer, PanchaVenkat Bhagirath, Ashalata Gannepalli
    Journal of Oral and Maxillofacial Pathology.2020; 24(1): 152.     CrossRef
  • Applications of deep learning for the analysis of medical data
    Hyun-Jong Jang, Kyung-Ok Cho
    Archives of Pharmacal Research.2019; 42(6): 492.     CrossRef
  • PROMISE CLIP Project: A Retrospective, Multicenter Study for Prostate Cancer that Integrates Clinical, Imaging and Pathology Data
    Jihwan Park, Mi Jung Rho, Yong Hyun Park, Chan Kwon Jung, Yosep Chong, Choung-Soo Kim, Heounjeong Go, Seong Soo Jeon, Minyong Kang, Hak Jong Lee, Sung Il Hwang, Ji Youl Lee
    Applied Sciences.2019; 9(15): 2982.     CrossRef
  • Key challenges for delivering clinical impact with artificial intelligence
    Christopher J. Kelly, Alan Karthikesalingam, Mustafa Suleyman, Greg Corrado, Dominic King
    BMC Medicine.2019;[Epub]     CrossRef
  • Deep Learning for Whole Slide Image Analysis: An Overview
    Neofytos Dimitriou, Ognjen Arandjelović, Peter D. Caie
    Frontiers in Medicine.2019;[Epub]     CrossRef
  • Barriers to Artificial Intelligence Adoption in Healthcare Management: A Systematic Review
    Mir Mohammed Assadullah
    SSRN Electronic Journal .2019;[Epub]     CrossRef

J Pathol Transl Med : Journal of Pathology and Translational Medicine
TOP