Skip Navigation
Skip to contents

J Pathol Transl Med : Journal of Pathology and Translational Medicine

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
3 "Human embryo"
Filter
Filter
Article category
Keywords
Publication year
Authors
Original Articles
Tongue Growth during Prenatal Development in Korean Fetuses and Embryos
Soo Jeong Hong, Bong Geun Cha, Yeon Sook Kim, Suk Keun Lee, Je Geun Chi
J Pathol Transl Med. 2015;49(6):497-510.   Published online October 16, 2015
DOI: https://doi.org/10.4132/jptm.2015.09.17
  • 11,083 View
  • 115 Download
  • 6 Web of Science
  • 10 Crossref
AbstractAbstract PDF
Background
Prenatal tongue development may affect oral-craniofacial structures, but this muscular organ has rarely been investigated. Methods: In order to document the physiology of prenatal tongue growth, we histologically examined the facial and cranial base structures of 56 embryos and 106 fetuses. Results: In Streeter’s stages 13–14 (fertilization age [FA], 28 to 32 days), the tongue protruded into the stomodeal cavity from the retrohyoid space to the cartilaginous mesenchyme of the primitive cranial base, and in Streeter’s stage 15 (FA, 33 to 36 days), the tongue rapidly swelled and compressed the cranial base to initiate spheno-occipital synchondrosis and continued to swell laterally to occupy most of the stomodeal cavity in Streeter’s stage 16–17 (FA, 37 to 43 days). In Streeter’s stage 18–20 (FA, 44 to 51 days), the tongue was vertically positioned and filled the posterior nasopharyngeal space. As the growth of the mandible and maxilla advanced, the tongue was pulled down and protruded anteriorly to form the linguomandibular complex. Angulation between the anterior cranial base (ACB) and the posterior cranial base (PCB) was formed by the emerging tongue at FA 4 weeks and became constant at approximately 124°–126° from FA 6 weeks until birth, which was consistent with angulations measured on adult cephalograms. Conclusions: The early clockwise growth of the ACB to the maxillary plane became harmonious with the counter-clockwise growth of the PCB to the tongue axis during the early prenatal period. These observations suggest that human embryonic tongue growth affects ACB and PCB angulation, stimulates maxillary growth, and induces mandibular movement to achieve the essential functions of oral and maxillofacial structures.

Citations

Citations to this article as recorded by  
  • 3D Genial Tubercle Anatomic Considerations in Genioglossus Advancement Surgery
    Nihal Punjabi, Alexandra Vacaru, Jared C. Inman
    Otolaryngology–Head and Neck Surgery.2024;[Epub]     CrossRef
  • Fetal Micro and Macroglossia
    Natalie Koren, Shir Shust‐Barequet, Tal Weissbach, Oshrat Raviv, Samar Abu Snenh, Efrat Abraham, Tal Cahan, Vered Eisenberg, Vered Yulzari, Efrat Hadi, Laura Adamo, Shali Mazaki Tovi, Reuven Achiron, Zvi Kivilevitch, Boaz Weisz, Eran Kassif
    Journal of Ultrasound in Medicine.2023; 42(1): 59.     CrossRef
  • Current data on the development of tongue in prenatal period of human ontogenesis
    Tatyana A. Alekseeva, Elena D. Lutsay
    Science and Innovations in Medicine.2022; 7(3): 148.     CrossRef
  • Morphometric development of the tongue in fetal cadavers
    Ahmet Dursun, Yadigar Kastamonı, Demet Kacaroglu, Neslihan Yuzbasıoglu, Tolga Ertekın
    Surgical and Radiologic Anatomy.2020; 42(1): 3.     CrossRef
  • Pigmented Fungiform Papillae of the Tongue and Lingual Fimbriae as Single Presentation in Adult: A Case Report and Literature Review
    Meircurius Dwi Condro Surboyo, Diah Savitri Ernawati, Adiastuti Endah Parmadiati, Riyan Iman Marsetyo
    European Journal of Dentistry.2020; 14(04): 702.     CrossRef
  • Tongue development in stillborns autopsied at different gestational ages
    Laura S. Aguiar, Guilherme R. Juliano, Luciano A.M. Silveira, Mariana S. Oliveira, Bianca G.S. Torquato, Gabriela R. Juliano, Márcia F. Araújo, Sanivia Aparecida L. Pereira, Vicente de Paula A. Teixeira, Mara Lúcia F. Ferraz
    Jornal de Pediatria.2018; 94(6): 616.     CrossRef
  • In Utero Glossoptosis in Fetuses With Robin Sequence
    Cory M. Resnick, Tessa D. Kooiman, Carly E. Calabrese, Ryne Didier, Bonnie L. Padwa, Judy A. Estroff, Maarten J. Koudstaal
    The Cleft Palate-Craniofacial Journal.2018; 55(4): 562.     CrossRef
  • Tongue development in stillborns autopsied at different gestational ages
    Laura S. Aguiar, Guilherme R. Juliano, Luciano A.M. Silveira, Mariana S. Oliveira, Bianca G.S. Torquato, Gabriela R. Juliano, Márcia F. Araújo, Sanivia Aparecida L. Pereira, Vicente de Paula A. Teixeira, Mara Lúcia F. Ferraz
    Jornal de Pediatria (Versão em Português).2018; 94(6): 616.     CrossRef
  • Coexisting Congenital Subglosso-palatal Membrane and Tongue Dermoid in a Neonate
    Preeti Tiwari, Vaibhav Pandey, Jayanto Tapadar
    Indian Pediatrics.2018; 55(12): 1087.     CrossRef
  • Tongue harmatoma in association with cleft palate: Case report
    UwakweCosmas Mba, IfeanyiIgwilo Onah
    Journal of Cleft Lip Palate and Craniofacial Anomalies.2017; 4(2): 168.     CrossRef
Molecular Cloning of Novel Genes Related to the Craniofacial Development of Human Embryo.
Young Jun Lee, Tak Soo Go, Hyung Wook Han, Sang Shin Lee, Eun Cheol Kim, Yeon Sook Kim, Suk Keun Lee, Je G Chi
Korean J Pathol. 2000;34(12):961-971.
  • 1,607 View
  • 12 Download
AbstractAbstract PDF
In order to obtain novel genes for craniofacial development of human, molecular cloning and sequencing were performed and followed by in situ hybridization in tissue sections. Subtracted cDNA library of craniofacial tissue from 8 weeks old human embryo was made by the subtraction with cDNA of RHEK cells. A total of 231 clones were obtained and their partial sequence data disclosed that 214 clones were nonredundant in Genebank search. We have done in situ hybridization screening on the craniofacial sections of a 10 weeks old human fetus, and found significant positive reaction in 30 clones. Depending on the cell type of similar developmental origin, the positive reactions could be divided into four groups: first group showed an intense positive reaction in neural tube, ganglion, and a part of peripheral nerve tissue, second group relatively diffuse positive reaction in neural tube, cartilage, epithelium, and muscle, third group localized positive reaction in nerve, and muscle, and fourth group positive reaction in almost all kinds of cells of craniofacial tissues. Although every clone showed different expression patterns in the craniofacial development, some of them showed intense mRNA expressions in the characteristic cell type. Because this study also aimed to test a screening methods to find out novel genes related to craniofacial development by the subtracted cDNA library and in situ hybridization, the intense positive reaction of a certain clone by in situ hybridization may indicate its role in the developmental processes. We presumed that 30 clones selected in this study are possibly important new genes for the development of human craniofacial structure.
Morphological Observation on the Prenatal Development of the Human Gastrointestinal Tract.
Yeon Lim Suh, Je G Chi
Korean J Pathol. 1990;24(2):103-119.
  • 1,655 View
  • 20 Download
AbstractAbstract PDF
A total of 322 fetuses and 29 embryos were examined light microscopically to evaluate the morphological development of the human gastrointestinal tract with increasing gestational age. The human embryos were analysed by reconstruction of serial section slides. One hundred and forty fetuses ranging from 15 to 41 weeks of gestation were used for correlating the gestational age and the body weight with the measurement of the small and large intestines. 1) The esophagus develps from the distal part of the foregut through a partition of the tracheoesophageal septum. Initially the esophagus is short, but it elongates rapidly and reaches its final relative length and position by the seventh week. The epithelium of the esophagus proliferates and completely obliterates the lumen by the seventh week, but recanalization occurs by the ninth week. The esophageal epithelia consist of three different groups of cells; stratified squamoid cells, ciliated columnar cells and tall columnar cells by the 21th week. 2) The stomach appears as a fusiform enlargement of the caudal part of the esophagus at the fourth week. During next two weeks the stomach acquires its adult shape and final position. The primordial gastric pits and the parietal cells appear at the eighth and eleventh weeks, respectively. 3) As the midgut elongates, it forms a ventral U-shaped loop, called primitive intestinal loop by the fifth week. At this stage the cecum appears as a swelling from the caudal limb of the intestinal loop. By the seventh week the bulks of the caudal limb of the intestine herniate into the umbilical cord, in which the loop rotates 90 degrees counterclockwise around the axis of the superior mesenteric artery. During the tenth week, the intestine returns to the abdomen and undergoes a further 180 degrees counterclockwise rotatation. 4) The cloaca is divided into two parts by a urorectal septum at the fifth week. By the seventh week the urorectal septum has fused with the cloacal membrane, dividing it into a dorsal anal membrane and ventral urogenital membrane. The anal membrane ruptures at the eighth week. 5) During the sixth week the duodenal lumen becomes completely filled with proliferating epithelium. The villi project from the mucosa of the small and large intestines at the eighth and eleventh weeks, respectively. The villi of large intestine become resorbed again after the 21th week. At the fifth week Paneth cells appear through the entire length of the intestine including the rectum, but disappear in the colon and the rectum after the 36th week. 6) The developing Auerbach's plexuses are well recognized along the outside of muscle coat throughout the gastrointestinal tract, but demonstrate no immunoreactivity for the anti-neuron specific enolase antibody. The neuroblasts in the myenteric plexus reveal strong positivity for the anti-neuron specific enolase antibody at the eleventh week, but the ganglion cells differentiate by the fourteenth week. 7) Differentiation of the gastrointestinal wall and development of the myenteric plexus begin form the esophagus and progress caudally down to the colon. But the anorectal wall is differentiated from the cloaca more earlier than the esophagus, stomach and colon are. 8) The small and the large intestines elongate progressively with the increasing gestational age and body weight and increase approximately 5.6 and 5.4 folds, respectively during the 25 weeks from the 15th to 41th week of gestation. At the 40th gestational week the small intestine is 5.68 times the length of the colon. 9) The correlation between the body weight (BW), crown-rump length (CR) and intestianl length (small intestine (SI), large itestine (LI) is presented as: SI (cm)= -33.67 + 4.14CR + 11.62 (BW)(1/3), LI (cm)= 5.56 + 0.76CR + 0.007BW (gm), CR (cm)= 7.82 + 0.015 SI + 0.41 (BW)(1/2).

J Pathol Transl Med : Journal of Pathology and Translational Medicine