Skip Navigation
Skip to contents

J Pathol Transl Med : Journal of Pathology and Translational Medicine

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
1 "Nishant Thakur"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Original Article
Article image
A machine-learning expert-supporting system for diagnosis prediction of lymphoid neoplasms using a probabilistic decision-tree algorithm and immunohistochemistry profile database
Yosep Chong, Ji Young Lee, Yejin Kim, Jingyun Choi, Hwanjo Yu, Gyeongsin Park, Mee Yon Cho, Nishant Thakur
J Pathol Transl Med. 2020;54(6):462-470.   Published online August 31, 2020
DOI: https://doi.org/10.4132/jptm.2020.07.11
  • 4,585 View
  • 126 Download
  • 8 Web of Science
  • 9 Crossref
AbstractAbstract PDFSupplementary Material
Background
Immunohistochemistry (IHC) has played an essential role in the diagnosis of hematolymphoid neoplasms. However, IHC interpretations can be challenging in daily practice, and exponentially expanding volumes of IHC data are making the task increasingly difficult. We therefore developed a machine-learning expert-supporting system for diagnosing lymphoid neoplasms.
Methods
A probabilistic decision-tree algorithm based on the Bayesian theorem was used to develop mobile application software for iOS and Android platforms. We tested the software with real data from 602 training and 392 validation cases of lymphoid neoplasms and compared the precision hit rates between the training and validation datasets.
Results
IHC expression data for 150 lymphoid neoplasms and 584 antibodies was gathered. The precision hit rates of 94.7% in the training data and 95.7% in the validation data for lymphomas were not statistically significant. Results in most B-cell lymphomas were excellent, and generally equivalent performance was seen in T-cell lymphomas. The primary reasons for lack of precision were atypical IHC profiles for certain cases (e.g., CD15-negative Hodgkin lymphoma), a lack of disease-specific markers, and overlapping IHC profiles of similar diseases.
Conclusions
Application of the machine-learning algorithm to diagnosis precision produced acceptable hit rates in training and validation datasets. Because of the lack of origin- or disease- specific markers in differential diagnosis, contextual information such as clinical and histological features should be taken into account to make proper use of this system in the pathologic decision-making process.

Citations

Citations to this article as recorded by  
  • Revolutionizing Pathology with Artificial Intelligence: Innovations in Immunohistochemistry
    Diana Gina Poalelungi, Anca Iulia Neagu, Ana Fulga, Marius Neagu, Dana Tutunaru, Aurel Nechita, Iuliu Fulga
    Journal of Personalized Medicine.2024; 14(7): 693.     CrossRef
  • Enhanced Immunohistochemistry Interpretation with a Machine Learning-Based Expert System
    Anca Iulia Neagu, Diana Gina Poalelungi, Ana Fulga, Marius Neagu, Iuliu Fulga, Aurel Nechita
    Diagnostics.2024; 14(17): 1853.     CrossRef
  • Optimization of diagnosis and treatment of hematological diseases via artificial intelligence
    Shi-Xuan Wang, Zou-Fang Huang, Jing Li, Yin Wu, Jun Du, Ting Li
    Frontiers in Medicine.2024;[Epub]     CrossRef
  • Real-Life Barriers to Diagnosis of Early Mycosis Fungoides: An International Expert Panel Discussion 
    Emmilia Hodak, Larisa Geskin, Emmanuella Guenova, Pablo L. Ortiz-Romero, Rein Willemze, Jie Zheng, Richard Cowan, Francine Foss, Cristina Mangas, Christiane Querfeld
    American Journal of Clinical Dermatology.2023; 24(1): 5.     CrossRef
  • Validation of a Machine Learning Expert Supporting System, ImmunoGenius, Using Immunohistochemistry Results of 3000 Patients with Lymphoid Neoplasms
    Jamshid Abdul-Ghafar, Kyung Jin Seo, Hye-Ra Jung, Gyeongsin Park, Seung-Sook Lee, Yosep Chong
    Diagnostics.2023; 13(7): 1308.     CrossRef
  • Clinical approaches for integrating machine learning for patients with lymphoma: Current strategies and future perspectives
    Dai Chihara, Loretta J. Nastoupil, Christopher R. Flowers
    British Journal of Haematology.2023; 202(2): 219.     CrossRef
  • Current Trend of Artificial Intelligence Patents in Digital Pathology: A Systematic Evaluation of the Patent Landscape
    Muhammad Joan Ailia, Nishant Thakur, Jamshid Abdul-Ghafar, Chan Kwon Jung, Kwangil Yim, Yosep Chong
    Cancers.2022; 14(10): 2400.     CrossRef
  • Recent Application of Artificial Intelligence in Non-Gynecological Cancer Cytopathology: A Systematic Review
    Nishant Thakur, Mohammad Rizwan Alam, Jamshid Abdul-Ghafar, Yosep Chong
    Cancers.2022; 14(14): 3529.     CrossRef
  • Diagnosis prediction of tumours of unknown origin using ImmunoGenius, a machine learning-based expert system for immunohistochemistry profile interpretation
    Yosep Chong, Nishant Thakur, Ji Young Lee, Gyoyeon Hwang, Myungjin Choi, Yejin Kim, Hwanjo Yu, Mee Yon Cho
    Diagnostic Pathology.2021;[Epub]     CrossRef

J Pathol Transl Med : Journal of Pathology and Translational Medicine
TOP