Search
- Page Path
-
HOME
> Search
Original Articles
- Distribution of Free Radicals in Reperfusion Injury after Transient Brain Ischemia.
-
Eunkyoung Kwak, Hyungho Suh, Jiyoung Park, Yunsup Kum, Taein Park, Jungwan Kim, Yoonkyung Sohn
-
Korean J Pathol. 2000;34(11):893-900.
-
-
-
Abstract
PDF
- Free radicals are known as an important factor which may act on reperfusion injury after transient or permanent brain ischemia. Numerous studies about cytotoxic function of free radical have been done. Most of these studies demonstrate the function of free radical in reperfusion injury by using radical scavenger or antioxidant as inhibitor of radicals. We used a modification of Karnovsky's Mn2 /diaminobenzidine (DAB) technique to demonstrate intravascular free radicals following transient occlusion and reperfusion of one middle cerebral artery in Sprague-Dawley rats. The MCA was occluded for 2 hours using an intraluminal suture method.
The reperfusion time after transient ischemia was 1 hour, 6 hours, and 24 hours, respectively. Animals were perfused transcardially with solution containing Mn2 and DAB. After DAB perfusion, the brains were removed promptly, sectioned in frozen, and stained with methylene blue for light microscopic examination. Upon light microscopic examination, free radicals were confined within intravascular lumen and the amount of deposits increased according to the duration of reperfusion. Upon electron microscopic examination, free radicals were located in nuclear membrane and membrane of mitochondria and RER, and demonstrated as electron dense deposits. In addition, cell processes of the neuron revealed an electron dense deposits beneath the inner side of the membrane. In conclusion, free radicals demonstrated in the reperfusion injury area indicate that free radical acts as an important cytotoxic factor. Intracellular localization of free radicals may explain the relationship between free radical and delayed neuronal injury.
- The Effect of Ischemic Preconditioning in Rat Liver: The Expression of Interleukin-1 and Nuclear Factor-B.
-
Kum Yoon Seup, Soo Kyoung Lee, Sun zoo Kim, Eun Kyoung Kwak, Ji Young Park, Tae In Park, Han Ik Bae, Yoon Kyung Sohn, In Soo Suh
-
Korean J Pathol. 2002;36(4):238-242.
-
-
-
Abstract
PDF
- BACKGROUND
A short period of ischemia and reperfusion, called ischemic preconditioning, protects various tissues against subsequent sustained ischemic insult. Apoptosis of hepatocytes and sinusoidal endothelial cells are a critical mechanisms of injury in the ischemic liver. Because nuclear factor-B (NF-B) has a significant role in the cell survival, we hypothesized that ischemic preconditioning protects by inhibition of apoptosis through the expression of NF-B, induced by interleukin-1 (IL-1), which is known for enhancement of its transcription and activation.
METHODS
We induced ischemia and reperfusion on rat liver, and performed in situ terminal deoxyribonucleotidyl transferase-mediated dUTP nick end labelling assay and polymerase chain reaction for IL-1 mRNA and NF-B mRNA.
RESULTS
Apoptosis of hepatocytes and sinusoidal endothelial cells, assessed by in situ TUNEL assay, was significantly reduced with preconditioning. The expression of IL-1 mRNA and NF-B mRNA are seen on discrete monoclonal bands around 344 and 356 base pairs, in comparison with normal rat liver, but, there was no significant difference between the ischemia-reperfusion group and the preconditioning group.
CONCLUSIONS
We suggest that ischemic preconditioning confers dramatic protection against prolonged ischemia via inhibition of apotosis through the expression of IL-1 inducing NF-B and its activation. However, we need further study in the activity of NF-B, such as nucleotide shift assay, because the activity of NF-B is regulated by binding of the inhibitory protein, IB.
TOP