Warning: fopen(/home/virtual/jptm/journal/upload/ip_log/ip_log_2022-12.txt): failed to open stream: Permission denied in /home/virtual/lib/view_data.php on line 83 Warning: fwrite() expects parameter 1 to be resource, boolean given in /home/virtual/lib/view_data.php on line 84 Journal of Pathology and Translational Medicine
Skip Navigation
Skip to contents

JPTM : Journal of Pathology and Translational Medicine



Page Path
HOME > J Pathol Transl Med > Volume 34(6); 2000 > Article
Original Article Gene Expressions of Mouse Submandibular Gland during the Developmental Stage and Their Antisense Inhibition in Organ Culture.
Yeon Sook Kim, Suk Keun Lee, Je G Chi
Journal of Pathology and Translational Medicine 2000;34(6):395-412
DOI: https://doi.org/
  • 10 Download
  • 0 Crossref
  • 0 Scopus
1Department of Oral Pathology, Kangnung National University Dental College, Kangnung 210-702, Korea.
2Department of Pathology, Seoul National University Medical College.

This study is aimed to observe the expressions of different genes, including the extracellular matrix proteins, growth factors, and transcription factors during different developmental stages of mouse submandibular gland. Reverse transcription-polymerase chain reaction (RT-PCR) and the antisense inhibition in organ culture system were performed using mouse embryos and newborns. Total 140 mouse embryos (E14(80), E15(20), E16(20), E18(20)) and 30 newborn mice (D2(10), D3(10), D6(10)) obtained from 60 pregnant mice and 3 adult mice (3 weeks old) were used for the cDNA production and the salivary gland organ culture. Syndecan, perlecan, laminin alpha1 chain, TGF beta1, beta 3, and sonic hedgehog mRNAs were expressed in the early stage (E14~E16) of the submandibular gland development, whereas transglutaminase C (TGase C), E-cadherin, epimorphin, laminin beta2 and gamma1 chains, and HGF mRNAs were expressed in the middle and late stages (E16~E18, D2~D6). Antisense inhibition of different genes in the organ culture of E14 mouse embryos of submandibular gland showed specific growth retardation in the development of ductal and acinar cells. Especially, the antisense inhibition of perlecan, E-cadherin, laminin alpha1 chain, laminin beta2 chain, and syndecan mRNA arrested the growth of ductal and acinar cells. While the antisense inhibition of integrin beta5 greatly affected the acinar cell differentiation and also produced cystic dilatation of salivary ducts, the antisense inhibition of fibronectin showed aberrant growth of ectomesenchymal tissues of the mouse submandibular gland.

Related articles

JPTM : Journal of Pathology and Translational Medicine